早教吧作业答案频道 -->数学-->
一到几何题在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点落在AD上的点F处,折痕DE交BC于E,连结FE1、试说明四边形CDFE是菱形.2、若BD=CD+AD,试判断四边形ABED的形状.现在等级还低,无
题目详情
▼优质解答
答案和解析
没图,只好以想象力来说明了.画图如下:
(1)在梯形ABCD中,过点D折线,连接折线DE,
C点落在AD上的点F处,DC=DF,
在△CDE和△DEF中,DC=DF,DE=DE(公共边)
∠FDE=∠DEC(对折重叠的角相等)
∴△CDE≌△DEF,因此,EF=EC
在△CDE中,∵∠DEC=∠EDF(内错角相等)
∴∠FDE=∠DEC=∠EFD,得出,CD=CE
因此,CD=DF=EF=EC,所以,四边形CDFE是菱形.
(2)在BD=CD+AD的条件下,
CD和AD仍然是不确定的因素,即A,C点可变动,
所以,得出四边形ABED的形状仍然是千变万化的,
但永远是梯形.图中的A'BE'D就是变化中的一种.
(1)在梯形ABCD中,过点D折线,连接折线DE,
C点落在AD上的点F处,DC=DF,
在△CDE和△DEF中,DC=DF,DE=DE(公共边)
∠FDE=∠DEC(对折重叠的角相等)
∴△CDE≌△DEF,因此,EF=EC
在△CDE中,∵∠DEC=∠EDF(内错角相等)
∴∠FDE=∠DEC=∠EFD,得出,CD=CE
因此,CD=DF=EF=EC,所以,四边形CDFE是菱形.
(2)在BD=CD+AD的条件下,
CD和AD仍然是不确定的因素,即A,C点可变动,
所以,得出四边形ABED的形状仍然是千变万化的,
但永远是梯形.图中的A'BE'D就是变化中的一种.

看了一到几何题在梯形纸片ABCD中...的网友还看了以下:
10人答一份5道题的试卷,答对第一题的有8人,答对第二题的有7人,第三题有6人,第四题的有5人,第 2020-05-13 …
续写给我个题目一阵冷风吹过,我不禁打了个哆嗦.手中紧握着笔,偶尔烦躁不安的旋转着.望着监考老师那面 2020-05-13 …
甲乙两地相距120千米,一辆客车和一辆货车同时从甲地驶往乙地,结果客车比货车早到半小(含有这题的试 2020-06-23 …
一道被称为“神题”的试题,题目是:“有一只熊掉到一个陷阱里,陷阱深19.617米,下落时间正好2秒 2020-07-24 …
“退休了好几年的父亲一时起兴,在窗外一块巴掌大的地方种上草莓.”这句话运用了什么修辞手法?最好是给 2020-07-24 …
北京市1998年一共有湿地鸟类112种,由于加强湿地保护,到2004年,北京市的湿地鸟类比1998年 2020-11-21 …
克隆形成试验的问题的试验是关于放疗增敏的,可实验室没人做过这方面的试验,没办法,有个师姐建议我在丁香 2020-12-22 …
一架飞机于当地时间2003年12月10日11时起飞,5分钟后过了180度经线,此时飞机所在地的区是不 2020-12-23 …
小名和小强两人参加数学比赛,试卷共20道题,做对一题得5分,做错或不做一题倒扣2分,两人都将20道题 2020-12-25 …
我要2011北京各个城区的初三化学的实验题和最后一道计算题的试题及答案 2021-01-12 …