早教吧作业答案频道 -->数学-->
高一直线系方程经过两直线l1:A1x+B1y+C1=0.l2:A2x+B2y+C2=0交点的直线方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0,为什么在这个方程中无论待定系数取什么实数,都得不到A2x+B2y+C2=0,不能表示直线l2呢?为什么能表
题目详情
▼优质解答
答案和解析
我们设m=A1x+B1y+C1,n=A2x+B2y+C2.
则直线l1就是m=0,直线l2就是n=0.
这两条直线都是已知的,所以,就没有必要去专门再回来找它们的描述方法了.于是,当待定系数设到直线l1的前头,让后头的直线l2系数为1,那么,就可以用线系方程表示l2了.
这也仅仅是为了书写起来简便而已.其实,原始的想法,人们就是用:
a*m + b*n = 0,来表示线系方程的.后来嫌两个参数麻烦(也不符合数学这门科学的“简洁”性),就方程两边同除以一个不为0的数(或者是a或者是b),就把两个参数的商用一个希腊字母“兰姆不达”表示啦.可这么一来呢,不是少了l1,就是少了l2.这也是无关紧要的哈.
则直线l1就是m=0,直线l2就是n=0.
这两条直线都是已知的,所以,就没有必要去专门再回来找它们的描述方法了.于是,当待定系数设到直线l1的前头,让后头的直线l2系数为1,那么,就可以用线系方程表示l2了.
这也仅仅是为了书写起来简便而已.其实,原始的想法,人们就是用:
a*m + b*n = 0,来表示线系方程的.后来嫌两个参数麻烦(也不符合数学这门科学的“简洁”性),就方程两边同除以一个不为0的数(或者是a或者是b),就把两个参数的商用一个希腊字母“兰姆不达”表示啦.可这么一来呢,不是少了l1,就是少了l2.这也是无关紧要的哈.
看了高一直线系方程经过两直线l1:...的网友还看了以下:
抛物线C1的顶点在坐标原点,它的准线经过椭圆C2:x2/a2-y2/b2=1的一个焦点F1且垂直于 2020-04-08 …
已知曲线C1:y=X^2,C2:y=2x^2-3x+3,直线l:y=kx+m,l与C1和C2有四个 2020-06-06 …
为什么直线与直线的关系中有直线l1l2,A1/A2=B1/B2≠C1/C2(A2×B2×C2≠0) 2020-06-23 …
微分方程xy’’+3y’=0的通解是()微分方程xy’’+3y’=0的通解是()A.y=C1x+C 2020-06-25 …
EXCEL中用IF函数超过了7层怎么办?IF(C2=0,"",IF(B2="A",VLOOKUP( 2020-07-08 …
急问!量子力学问题.求问下面算式中C1*,ψ1*的含义求下面算式中C1*,ψ1*的含义.*何意,以 2020-07-09 …
在直角坐标系xOy中,已知圆C1的参数方程为x=1+cosϕy=2+sinϕ(ϕ为参数),以坐标原 2020-07-30 …
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C1和直线C2的极坐标方程 2020-07-31 …
已知曲线C1:f(x)=x^2+e^2,C2:g(x)=2e^2lnx(1)证明;当x>0时,f( 2020-08-01 …
如果实数a,b,c满足a2+b2+c2=9,那么代数式(a-b)2+(b-c)2+(c-a)2的最大 2020-11-18 …