早教吧作业答案频道 -->数学-->
如图,已知圆O1,圆O2 外切于P,过圆O1上一点B作圆O1切线交圆O2于C、D,直线PB交圆O2如图,已知圆O1,圆O2 外切于P,过圆O1上一点B作圆O1切线交圆O2于C、D,直线PB交圆O2于A,求证:AD^2+BC BD=AB^2
题目详情
如图,已知圆O1,圆O2 外切于P,过圆O1上一点B作圆O1切线交圆O2于C、D,直线PB交圆O2
如图,已知圆O1,圆O2 外切于P,过圆O1上一点B作圆O1切线交圆O2于C、D,直线PB交圆O2于A,求证:AD^2+BC BD=AB^2

如图,已知圆O1,圆O2 外切于P,过圆O1上一点B作圆O1切线交圆O2于C、D,直线PB交圆O2于A,求证:AD^2+BC BD=AB^2

▼优质解答
答案和解析
过点P作两圆的公切线交BD于E.
∵A、P、C、D共圆,∴∠APD=∠ACD,∴∠BPD=∠ACB.
∵PE、BE分别切⊙O1于P、E,∴∠EPB=∠ABD,∴∠BPD=∠DPE+∠ABD,
∴∠ACB=∠DPE+∠ABD.
∵PE切⊙2于P,∴∠DPE=∠BAD,∴∠ACB=∠BAD+∠ABD=180°-∠ADC.
∵A、P、C、D共圆,∴∠APC=180°-∠ADC,∴∠ACB=∠APC,又∠BAC=∠CAP,
∴△ABC∽△ACP,∴∠ABD=∠ACP.
∵A、P、C、D共圆,∴∠ADP=∠ACP,∴∠ADP=∠PBD,∴AD是△PBD外接圆的切线,
∴由切割线定理,有:AD^2=AP×AB=(AB-BP)AB=AB^2-AB×BP.
对⊙2来说,由割线定理,有:AB×BP=BC×BD,∴AD^2=AB^2-BC×BD,
∴AD^2+BC×BD=AB^2.
∵A、P、C、D共圆,∴∠APD=∠ACD,∴∠BPD=∠ACB.
∵PE、BE分别切⊙O1于P、E,∴∠EPB=∠ABD,∴∠BPD=∠DPE+∠ABD,
∴∠ACB=∠DPE+∠ABD.
∵PE切⊙2于P,∴∠DPE=∠BAD,∴∠ACB=∠BAD+∠ABD=180°-∠ADC.
∵A、P、C、D共圆,∴∠APC=180°-∠ADC,∴∠ACB=∠APC,又∠BAC=∠CAP,
∴△ABC∽△ACP,∴∠ABD=∠ACP.
∵A、P、C、D共圆,∴∠ADP=∠ACP,∴∠ADP=∠PBD,∴AD是△PBD外接圆的切线,
∴由切割线定理,有:AD^2=AP×AB=(AB-BP)AB=AB^2-AB×BP.
对⊙2来说,由割线定理,有:AB×BP=BC×BD,∴AD^2=AB^2-BC×BD,
∴AD^2+BC×BD=AB^2.
看了 如图,已知圆O1,圆O2 外...的网友还看了以下:
(11分)2-1画出2,4-戊二酮的钠盐与Mn3+形成的电中性配合物的结构式(配体用表示)。2-2 2020-05-13 …
求圆关于点对称的题目,有一步骤没看懂求圆x^2+y^2-x+2y=0关于点0(1,2)对称的圆方程 2020-07-26 …
椭圆X2/4+Y2/3=1上有一动点,圆E:(x-i)^2+y^2=1,过圆心E任意做一条直线与圆 2020-07-26 …
已知椭圆有一个切线,及一个切点.椭圆在切线上滚动旋转,切点不动且切点始终在圆上,求椭圆圆心的运行轨 2020-07-31 …
圆1、圆2外切于P,AB为两圆的外公切线,A、B分别为切点,AC为圆1的直径,CD切圆2与D.求证 2020-07-31 …
圆1和圆2外切于M,它们的两条外公切线夹角为60度,连心线与圆1、圆2分别交于A、B,(异于M点) 2020-08-01 …
1.圆A的直径是圆B直径的5分之3,圆B的周长是圆A的()倍,圆B的面积是圆A的(1.圆A的直径是 2020-08-01 …
基本不等式的使用问题a+b=1,求(a+2)^2+(b+2)^2的最小值.在这道题里,如果使用基本 2020-08-03 …
已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程 2020-10-31 …
阅读下列材料:1×2=1/3(1×2×3-0×1×2),2×3=1/3(2×3×4-1×2×3)3× 2021-01-17 …