早教吧作业答案频道 -->数学-->
等差数列前n项之和.设公差为-2的等差数列,如果a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99=()Q1:设a3+a6+...a99=S则S-50=(a3-a1)+(a6-a4)+.(a99-a97)=33*2d这里的“33对”是怎么看出来的?在200与500之间,求所有
题目详情
等差数列前n项之和.
设公差为-2的等差数列,如果a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99=()
Q1:设a3+a6+...a99=S 则S-50=(a3-a1)+(a6-a4)+.(a99-a97)=33*2d
这里的“33对”是怎么看出来的?
在200与500之间,求所有能被3整除的自然数的和.
Q2:an=3n (67
设公差为-2的等差数列,如果a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99=()
Q1:设a3+a6+...a99=S 则S-50=(a3-a1)+(a6-a4)+.(a99-a97)=33*2d
这里的“33对”是怎么看出来的?
在200与500之间,求所有能被3整除的自然数的和.
Q2:an=3n (67
▼优质解答
答案和解析
Q1:可以将数列的项的下标看成一个等差数列,首项是1,尾项是97,公差是3,可以根据等差数列的通项公式求出 97=1+3(n-1) n=33,这样就可以知道有多少项啦.
Q2:67不能被3整除,所以这项可以舍去,从68开始(68能被3整除),166也不能被3整除,而167能被3整除,我们加上一项167(最后的项数要减去这一项),从68开始,到167结束能被3整除的数排成一个等差数列,首项是68,尾项是167,公差是3,根据等比数列的通项公式求出 167=68+3(n-1) n=34
所以最后的项数是33项.
这些一时看不出来的项数,可以根据她们的下标组成一个新的等差或等比数列,这样就可以求出一连串项的项数啦!
Q2:67不能被3整除,所以这项可以舍去,从68开始(68能被3整除),166也不能被3整除,而167能被3整除,我们加上一项167(最后的项数要减去这一项),从68开始,到167结束能被3整除的数排成一个等差数列,首项是68,尾项是167,公差是3,根据等比数列的通项公式求出 167=68+3(n-1) n=34
所以最后的项数是33项.
这些一时看不出来的项数,可以根据她们的下标组成一个新的等差或等比数列,这样就可以求出一连串项的项数啦!
看了 等差数列前n项之和.设公差为...的网友还看了以下:
EXCEl表中,A例有465464a4654,454654a778,8784a545,那如何提取字 2020-04-07 …
等比数列前n项和在等比数列{an}中,已知三个量,请算出未知的1.a1=?q=-1/2n=7an= 2020-05-13 …
Sn为等差数列{an}的前n项的和,a1=-2010,前2010项的和/2010-前2008/20 2020-05-13 …
有一系列a1,a2,a3.an,从第2个数开始,每个数等于1与它前一个数的倒数的差a1等于2/1则 2020-05-16 …
有若干个数,a1、a2、a3、…an,若a1=-1/2,从第二个数起,每个数都等于“1与它前的那个 2020-05-16 …
在百度搜索时,它会提供一个示例:如果A1为1,A5为3,A7为2,其他均为空,则:COUNT(A1 2020-05-17 …
求下列数列前n项的和a1=12/3a2=20/9a3=28/27.ansn=a1+a2+a3+.a 2020-06-23 …
在数列(An),A61=2000,An+1=An+n,则A1=?我那答案是这么写的An=A1+(A 2020-07-09 …
给定数列{an},记该数列前i项a1,a2,…,ai中的最大项为Ai,即Ai=max{a1,a2, 2020-07-21 …
已知(2x2+4x+3)6=a0+a1(x+1)2+a2(x+1)4+…+a6(x+1)12,则a0 2020-10-31 …