早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设a0为常数,且an=3n-1-2an-1(n∈N*).证明:n≥1时,an=15[3n+(-1)n-1•2n]+(-1)n•2n•a0.

题目详情
设a 0 为常数,且a n =3 n-1 -2a n-1 (n∈N*).证明:n≥1时,a n =
1
5
[3 n +(-1) n-1 •2 n ]+(-1) n •2 n •a 0
▼优质解答
答案和解析
证明:(1)当n=1时,
1
5
[3+2]-2a 0 =1-2a 0 ,而a 1 =3 0 -2a 0 =1-2a 0
∴当n=1时,通项公式正确.
(2)假设n=k(k∈N*)时正确,即a k =
1
5
[3 k +(-1) k-1 •2 k ]+(-1) k •2 k •a 0
那么a k+1 =3 k -2a k =3 k -
2
5
×3 k +
2
5
(-1) k •2 k +(-1) k+1 •2 k+1 a 0
=
3
5
•3 k +
1
5
(-1) k •2 k+1 +(-1) k+1 •2 k+1 •a 0
=
1
5
[3 k+1 +(-1) k •2 k+1 ]+(-1) k+1 •2 k+1 •a 0 .∴当n=k+1时,通项公式正确.
由(1)(2)可知,对n∈N*,a n =
1
5
[3 n +(-1) n-1 •2 n ]+(-1) n •2 n •a 0