早教吧作业答案频道 -->数学-->
用正交变换将二次型f(x1,x2,x3)=2x1^2+5x2^2+5x3^2+4x1x2-4x1x3-8x2x3化成标准型
题目详情
用正交变换将二次型f(x1,x2,x3)=2x1^2+5x2^2+5x3^2+4x1x2-4x1x3-8x2x3化成标准型
▼优质解答
答案和解析
解: |A-λE|=
2-λ 2 -2
2 5-λ -4
-2 -4 5-λ
r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)
2-λ 2 -2
2 5-λ -4
0 1-λ 1-λ
c2-c3
2-λ 4 -2
2 9-λ -4
0 0 1-λ
= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)
= (1-λ)(λ^2-11λ+10)
= (10-λ)(1-λ)^2.
A的特征值为: λ1=10,λ2=λ3=1.
(A-10E)X=0 的基础解系为 a1=(1,2,-2)'
(A-E)X=0 的基础解系为 a2=(2,-1,0)',a3=(2,0,1)
正交化得
b1=(1,2,-2)'
b2=(2,-1,0)'
b3=(1/5)(2,4,5)'
单位化得
c1=(1/3,2/3,-2/3)'
c2=(2/√5,-1/√5,0)'
c3=(2/√45,4/√45,5/√45)'
令Q=(c1,c2,c3). 则Y=QX是正交变换,且 f=10y1^2+y2^2+y3^2
2-λ 2 -2
2 5-λ -4
-2 -4 5-λ
r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)
2-λ 2 -2
2 5-λ -4
0 1-λ 1-λ
c2-c3
2-λ 4 -2
2 9-λ -4
0 0 1-λ
= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)
= (1-λ)(λ^2-11λ+10)
= (10-λ)(1-λ)^2.
A的特征值为: λ1=10,λ2=λ3=1.
(A-10E)X=0 的基础解系为 a1=(1,2,-2)'
(A-E)X=0 的基础解系为 a2=(2,-1,0)',a3=(2,0,1)
正交化得
b1=(1,2,-2)'
b2=(2,-1,0)'
b3=(1/5)(2,4,5)'
单位化得
c1=(1/3,2/3,-2/3)'
c2=(2/√5,-1/√5,0)'
c3=(2/√45,4/√45,5/√45)'
令Q=(c1,c2,c3). 则Y=QX是正交变换,且 f=10y1^2+y2^2+y3^2
看了 用正交变换将二次型f(x1,...的网友还看了以下:
若二次函数y=f(x)满足f(x1)=f(x2)(x1不等于x2).则对称轴为若二次函数y=f(x) 2020-03-30 …
1.若二次函数f(x)满足f(3+x)=f(3-x),则方程f(x)=0有两个实根x1,x2,则x1 2020-03-30 …
已知二次型f(x1,x2,x3)=x1^2+x2^2+x3^2+2x1*x2,(1)写出f的矩阵A 2020-04-07 …
对于函数①f(x)=(x-2)的平方,②f(x)=(1/2)|x-2|次方,③f(x)=lg(|x 2020-04-25 …
已知二次函数f(x)=ax2+bx+1,对于任意的实数x1、x2(x1≠x2),都有f(x1)+f 2020-06-03 …
已知f(x)=[1/根号(2π)]×e的-x²/2次方则f′(x)=[-x/根号(2π)]×e的- 2020-07-09 …
定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f[(x1+x2)/2]≤1/2[f( 2020-07-14 …
设f(x)=2^x,g(x)=x^2,则f'[g'(x)]=?F(X)=2的X次方,g(x)=X的 2020-07-22 …
如果对任意x1,x2∈R,都有f[(x1+x2)/2]≤1/2[f(x1)+f(x2),则称函数f 2020-07-29 …
线性代数问题1.已知二次型f(x1,x2,x3)=x1^2+tx2^2+2x3^2+2x1x2的秩为 2021-02-10 …