早教吧作业答案频道 -->数学-->
当x趋近于0时lim[x平方/2+1-根号下(1+x平方)]/[(cosx-e的x^2次幂)ln(1-sinx^2)]=?
题目详情
当x趋近于0时lim[x平方/2+1-根号下(1+x平方)]/[(cosx-e的x^2次幂)ln(1-sinx^2)]=?
▼优质解答
答案和解析
lim(x→0) [x^2/2+1-√(1+x^2)]/[(cosx-e^x^2)ln(1-sinx^2)]
=lim(x→0) [x^2/2+1-√(1+x^2)]/[(cosx-e^x^2)(-sinx^2)]
=lim(x→0) [x^2/2+1-√(1+x^2)]/[(cosx-e^x^2)(-x^2)] (0/0)
=lim(x→0) [x-x/√(1+x^2)]/[(-sinx-2xe^x^2)(-x^2)-2x(cosx-e^x^2)]
=lim(x→0) [√(1+x^2)-1]/[(-sinx-2xe^x^2)(-x)-2(cosx-e^x^2)]
=lim(x→0) (x^2/2)/(xsinx+2x^2e^x^2+2cosx-2e^x^2) (0/0)
=lim(x→0) x/(sinx+xcosx+4xe^x^2+4x^4e^x^2-2sinx-4xe^x^2)
=lim(x→0) x/(xcosx+4xe^x^2-sinx) (0/0)
=lim(x→0) 1/(cosx-xsinx+4e^x^2+8x^2e^x^2-cosx)
=lim(x→0) 1/(-xsinx+4e^x^2+8x^2e^x^2)
=1/4
=lim(x→0) [x^2/2+1-√(1+x^2)]/[(cosx-e^x^2)(-sinx^2)]
=lim(x→0) [x^2/2+1-√(1+x^2)]/[(cosx-e^x^2)(-x^2)] (0/0)
=lim(x→0) [x-x/√(1+x^2)]/[(-sinx-2xe^x^2)(-x^2)-2x(cosx-e^x^2)]
=lim(x→0) [√(1+x^2)-1]/[(-sinx-2xe^x^2)(-x)-2(cosx-e^x^2)]
=lim(x→0) (x^2/2)/(xsinx+2x^2e^x^2+2cosx-2e^x^2) (0/0)
=lim(x→0) x/(sinx+xcosx+4xe^x^2+4x^4e^x^2-2sinx-4xe^x^2)
=lim(x→0) x/(xcosx+4xe^x^2-sinx) (0/0)
=lim(x→0) 1/(cosx-xsinx+4e^x^2+8x^2e^x^2-cosx)
=lim(x→0) 1/(-xsinx+4e^x^2+8x^2e^x^2)
=1/4
看了 当x趋近于0时lim[x平方...的网友还看了以下:
求导数(1)y=2^sin(1/x)(2)y=ln(x+根号下x^2+a^2)(3)y=(x/2) 2020-05-14 …
ln(1+2^x)*ln(1+1/x)=?也就是想问:lnM*lnN=?ln(1+2^x)*ln( 2020-06-11 …
求此极限,n趋于无穷,limln(1+1/n)^2+(1+2/n)^2+(1+n/n)^2liml 2020-06-14 …
关于ln(-x+2)的图像这个图像从lnx平移来的方法,有两条.①lnx先和y轴对称,变成ln-x 2020-08-01 …
将函数f(x)=ln(2+x)展开成x的幂级数不同展开方法结果不一样?第一种:f'(x)=1/(2 2020-08-03 …
关于不定积分的!∫cscxdx=∫dx/sinx=∫sinxdx/(sinx)^2=-∫dcosx 2020-08-03 …
ln√x的积分怎么求∫(ln√x)dx,设u=ln√x,dv=dxdu=1/x*1/2*(x^(-1 2020-10-31 …
对数问题1.1/2[ln12+lnx+ln(x^2-4)-ln(x+2)]化简2.log0.8为底2 2020-11-17 …
求lim(x^2/(ln(1+x^2+x)+ln(1+x^2-x)))其中x->0不解的是如果ln两 2020-11-28 …
高数积分问题从0积到L.dx/(d+x),最后积分结果是什么∫dx/(d+x)=∫1/(d+x)d( 2020-12-26 …