早教吧作业答案频道 -->数学-->
向量证明三角形三条中线交于一点,1.证明三角形三条中线交于一点(以下字母全都表示向量)令AC=a,BC=b为基底有AB=a-b,AD=a-(b/2),BE=(-a/2)+b再令AD与BE相交于G1,并假定AG1=λAD,BG1=μBE,则有AG1=λa-λb/2,BG
题目详情
向量证明三角形三条中线交于一点,
1.证明三角形三条中线交于一点(以下字母全都表示向量)
令AC=a,BC=b为基底
有AB=a-b,AD=a-(b/2),BE=(-a/2)+b
再令AD与BE相交于G1,并假定AG1=λAD,BG1=μBE,
则有AG1=λa-λb/2,BG=(-μa/2)+μb
由于AG1=AB+BG1=(1-(μ/2))a=(μ-1)b
所以可以列方程解得λ=μ=2/3,所以AG1=2/3AD
再令AD与CF相交于点G2,同样的方法可以证得AG2=2/3AD
(这里要怎么证,得重新设基底吗,我用旧的基底解不出来,还是我计算哪错了,把最后“同理可得”概括的步骤写一下吧谢谢)
1.证明三角形三条中线交于一点(以下字母全都表示向量)
令AC=a,BC=b为基底
有AB=a-b,AD=a-(b/2),BE=(-a/2)+b
再令AD与BE相交于G1,并假定AG1=λAD,BG1=μBE,
则有AG1=λa-λb/2,BG=(-μa/2)+μb
由于AG1=AB+BG1=(1-(μ/2))a=(μ-1)b
所以可以列方程解得λ=μ=2/3,所以AG1=2/3AD
再令AD与CF相交于点G2,同样的方法可以证得AG2=2/3AD
(这里要怎么证,得重新设基底吗,我用旧的基底解不出来,还是我计算哪错了,把最后“同理可得”概括的步骤写一下吧谢谢)
▼优质解答
答案和解析
你已经怎明了,AD,BE的交点G1,把AD分成2∶1.从而AD.CF的交点G2也把AD
分成2∶1.[可以不必再证.下面*是证明],∴G1,G2重合.三个中线交于一点.
* AG2=sAD=s(a-b/2)=sa+(-s/2)b.
AG2=AC+tCE=a+t[(a-b)/2-a]=(1-t/2)a+(-t/2)b
s=1-t/2,-s/2=-t/2,s=t=2/3.
AG2=(2/3)AD,AD被G2分成2∶1
分成2∶1.[可以不必再证.下面*是证明],∴G1,G2重合.三个中线交于一点.
* AG2=sAD=s(a-b/2)=sa+(-s/2)b.
AG2=AC+tCE=a+t[(a-b)/2-a]=(1-t/2)a+(-t/2)b
s=1-t/2,-s/2=-t/2,s=t=2/3.
AG2=(2/3)AD,AD被G2分成2∶1
看了 向量证明三角形三条中线交于一...的网友还看了以下:
定义域为R的函数y=g(x),满足对任意a、b属于R,都有g(a+b)=g(a)乘g(b),且对任 2020-06-25 …
求数学大神,对于可导涵数f(x)的累积的涵数的表达式g(x),都有g(x)的导涵数是f(x).若成 2020-06-29 …
(2014•衡阳三模)设函数f(x),g(x)的定义域分别为D1,D2,且D1⊊D2.若对于任意x 2020-07-09 …
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,都有a⊕e= 2020-08-01 …
函数f(x)=x2+bln(x+1)-2x,b∈R(Ⅰ)当b=32时,求函数f(x)的极值;(Ⅱ) 2020-08-02 …
设函数f(x)=x+4/x-6(x>0)和g(x)=-x^2+ax+m(a,m均为实数),且对任意的 2020-11-16 …
已知R上的连续函数g(x)满足:①当x>0时,g′(x)>0恒成立(g′(x)为函数g(x)的导函数 2020-11-19 …
1、设函数f(x)为奇函数,且对任意x,y属于R都有f(x)-f(y)=f(x-y),当x0,f(1 2020-12-08 …
C++一道程序设计,寻高人解答。设计一个类circle,包含一个radius成员,由circle类派 2020-12-08 …
对于正整数k,记g(k)表示k的最大奇数因数,例如g(1)=1,g(2)=1,g(10)=5.设Sn 2020-12-23 …