早教吧作业答案频道 -->数学-->
若实数x,y满足方程x2+y2-4x+1=0,则y/(x+1)的最大值为_____,最小值为_____.
题目详情
若实数x,y满足方程x2+y2-4x+1=0,则y/(x+1)的最大值为_____,最小值为_____.
▼优质解答
答案和解析
设y/(x+1)=t,
代入原方程得x^2+(tx+t)^2-4x+1=0
==> (1+t^2)x^2+2t^2x-4x+1+t^2=0,
其判别式不小于0,
故(2t^2-4)^2-4(1+t^2)(1+t^2)≥0
4t^4-16t^2+16-4t^4-8t^2-4≥0
-24t^2+12≥0
t^2≤1/2
-√2/2≤t≤√2/2
最大值为__√2/2___,最小值为_-√2/2____.
代入原方程得x^2+(tx+t)^2-4x+1=0
==> (1+t^2)x^2+2t^2x-4x+1+t^2=0,
其判别式不小于0,
故(2t^2-4)^2-4(1+t^2)(1+t^2)≥0
4t^4-16t^2+16-4t^4-8t^2-4≥0
-24t^2+12≥0
t^2≤1/2
-√2/2≤t≤√2/2
最大值为__√2/2___,最小值为_-√2/2____.
看了 若实数x,y满足方程x2+y...的网友还看了以下:
线性规划数学题:实数x,y满足x-y+1≤0,x>0,y≤2,若实数x,y满足x-y+1≤0,x> 2020-05-16 …
1.设x,y满足2x+y-4≥0,x-y-1≥0,x-2y-2≤0,则z=x+y有无最大与最小值? 2020-05-19 …
已知m.n为正整数,实数x,y满足x+y=4(√x+m+√y+m)若x+y的最大值40,则m+n= 2020-07-26 …
高一不等式,1.如果x>0,y>0,xy=9,则x+y的最小值是?2.如果x>0,y>0,x+y=8 2020-11-01 …
(1)设a>0,b>0,求证:a3+b3≥a2b+ab2;(2)已知正数x、y满足2x+y=1,求1 2020-11-01 …
高中数学,填空.在线等1.已知正实数x,Y满足x+y+8=xy,若满足条件x,y都有不等式(x+y) 2020-11-03 …
1、如果x和y是非零实数,使得∣x∣+y=3和∣x∣y+x3=0,那么x+y等于()A、3;B、;C 2020-11-18 …
①正实数x,y,满足2x+y+6=xy,则求xy的最小值?②正数a,b,c,则a+1/b,b+1/c 2020-11-19 …
有关不等式方面已知满足{2x+y-2大于等于0,x-2y+4大于等于0,3x-y-3小于等于0,的实 2020-11-20 …
已知函数f(x)的定义域为(0,正无穷),当x大于1时,f(x)小于0,且对任意正实数x,y,满足f 2021-01-31 …