早教吧作业答案频道 -->数学-->
在平面直角坐标系中,已知抛物线y=-x^2+bx+c与x轴交于点AB(点 A在点 B的左侧),与 y轴的正半轴交于点 C,顶点为E .(Ⅰ)若b=2 ,c=3 ,求此时抛物线顶点 坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,
题目详情
在平面直角坐标系中,已知抛物线y=-x^2+bx+c与x轴交于点AB(点 A在点 B的左侧),与 y轴的正半轴交于点 C,顶点为E .
(Ⅰ)若b=2 ,c=3 ,求此时抛物线顶点 坐标;
(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满意
S△BCE = S△ABC,求此时直线BC 的解析式;
(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足
S△BCE = 2S△AOC,且顶点E 恰好落在直线 y=-4x+3上,求此时抛物线的解析式.
之前你的答案中,关于S△ABC的计算我看不懂,能详细介绍一下S△ABC=1/2|AB|*C到X轴的距离=√4-m*3-m最后一步是怎么得到的吗?
(Ⅰ)若b=2 ,c=3 ,求此时抛物线顶点 坐标;
(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满意
S△BCE = S△ABC,求此时直线BC 的解析式;
(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足
S△BCE = 2S△AOC,且顶点E 恰好落在直线 y=-4x+3上,求此时抛物线的解析式.
之前你的答案中,关于S△ABC的计算我看不懂,能详细介绍一下S△ABC=1/2|AB|*C到X轴的距离=√4-m*3-m最后一步是怎么得到的吗?
▼优质解答
答案和解析
(Ⅰ)若b=2 c=3 则y= -x^2+2x+3= -(x-1)^2+4 因此顶点坐标:E(1,4)
(Ⅱ)设将(Ⅰ)中的抛物线向下平移n个单位,则E (1,4 -n) C (0,3-n)
y= -(x-1)^2+(4 -n)
当y=0时,X1=1-√4-n X2=1+√4-n 所以A(1-√4-n,0) B(1+√4-n,0)
由S△BCE = S△ABC 得出S△ABE=2 S△ABC 即1/2 *AB*(4-n)=2 AB* (3-n)/2 得出n=2
因此y= -(x-1)^2+(4-n)=y= -(x-1)^2+2
还可得出E (1,2) C (0 ,1) A(1-√2,0) B(1+√2,0)
设BC的解析式为y=ax+b 将A(1-√2,0) B(1+√2,0) 代入y=ax+b 得出b=1 a=1-√2
所以BC的解析式为y=(1-√2)X+1
(Ⅲ)还没有解出.
(Ⅱ)设将(Ⅰ)中的抛物线向下平移n个单位,则E (1,4 -n) C (0,3-n)
y= -(x-1)^2+(4 -n)
当y=0时,X1=1-√4-n X2=1+√4-n 所以A(1-√4-n,0) B(1+√4-n,0)
由S△BCE = S△ABC 得出S△ABE=2 S△ABC 即1/2 *AB*(4-n)=2 AB* (3-n)/2 得出n=2
因此y= -(x-1)^2+(4-n)=y= -(x-1)^2+2
还可得出E (1,2) C (0 ,1) A(1-√2,0) B(1+√2,0)
设BC的解析式为y=ax+b 将A(1-√2,0) B(1+√2,0) 代入y=ax+b 得出b=1 a=1-√2
所以BC的解析式为y=(1-√2)X+1
(Ⅲ)还没有解出.
看了 在平面直角坐标系中,已知抛物...的网友还看了以下:
过第四象限的直线与抛物线交于点A(0,3)和和点C,已知点C是抛物线的顶点,且抛物线的对称轴与Y粥 2020-05-16 …
已知抛物线C的顶点在原点焦点F在x轴正半轴上设AB是抛物线C上的两个动点已知抛物线C的顶点在原点, 2020-05-16 …
抛物线与直线交点问题1)已知抛物线y=2x平方,直线y=kx+b经过点(2,6).若直线和抛物线只 2020-06-05 …
一到数学题:已知抛物线Y=1/2x2-x+1,点F(1,1)1、求该抛物线的顶点坐标2,取抛... 2020-06-14 …
已知抛物线C的顶点在原点,焦点在x轴上,已知抛物线C的顶点在原点,焦点F在x轴上,已知抛物线C横坐 2020-07-21 …
已知抛物线y已知抛物线y=x2+bx+c于x轴只有一个交点,且交点为A(2,0)已知抛物线y=x2 2020-07-29 …
已知抛物线y2=4x的焦点为F,准线与x轴的交点为K,点P是抛物线上的动点,Q是KP的中点.已知抛 2020-07-31 …
已知抛物线的顶点在原点,准线方程为x=1/4,该抛物线与过点(-1,0)的直线交于A,B.已知抛物 2020-07-31 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …
已知抛物线C:x2=2py(p>0)的焦点为F,A,B为抛物线上异于坐标原点O的不同两点,抛物线C在 2021-01-01 …