早教吧作业答案频道 -->数学-->
已知,抛物线y=ax平方+bx+c经过点O(0,0),A(7,4),且对称轴l与x轴交于点B(5,0),求抛物线的表达式
题目详情
已知,抛物线y=ax平方+bx+c经过点O(0,0),A(7,4),且对称轴l与x轴交于点B(5,0),求抛物线的表达式
▼优质解答
答案和解析
:(1)由题意得 -b 2a =5 c=0 49a+7b+c=4 (1分),
解得 a=-4 21 b=40 21 c=0. ,
∴y=-4 21 x2+40 21 x.(3分)
(2)∵△BOC与△DOC重合,OB=5,BC=5 2 ,
∴BO=DO=5,CD=BC=5 2 ,∠OBC=∠ODC=90°,
∴∠EDO+∠FDC=90°,又∠EDO+∠EOD=90°,
∴∠EOD=∠FDC,
∵∠OED=∠DFC=90°,
∴△EOD∽△FDC,(2分)
∴ED FC =EO DF =OD CD =5 5 2 =2,(1分)
∵四边形OEFB是矩形,
∴EF=OB,EO=FB,
设FC=x,则ED=2x,DF=5-2x,
∴EO=10-4x,
∴10-4x=5 2 +x,解,得x=3 2 ,
∴ED=3,EO=4,
∴D(3,4).(1分)
(3)过点H作HP⊥OB,垂足为点P.
∵S△DOH:S△DHC=1:4,
∴S△DOH S△DHC =OH HC =1 4 ,(1分)
∵HP⊥OB,CB⊥OB,
∴HP∥BC,
∴OH OC =OP OB =PH BC =1 5 ,
∴OP=1,PH=1 2 ,
∴H(1,1 2 ),(1分)
∴经过点D(3,4),H(1,1 2 )的直线DG的表达式为y=7 4 x-5 4 ,(1分)
∴G(5,15| 2)
解得 a=-4 21 b=40 21 c=0. ,
∴y=-4 21 x2+40 21 x.(3分)
(2)∵△BOC与△DOC重合,OB=5,BC=5 2 ,
∴BO=DO=5,CD=BC=5 2 ,∠OBC=∠ODC=90°,
∴∠EDO+∠FDC=90°,又∠EDO+∠EOD=90°,
∴∠EOD=∠FDC,
∵∠OED=∠DFC=90°,
∴△EOD∽△FDC,(2分)
∴ED FC =EO DF =OD CD =5 5 2 =2,(1分)
∵四边形OEFB是矩形,
∴EF=OB,EO=FB,
设FC=x,则ED=2x,DF=5-2x,
∴EO=10-4x,
∴10-4x=5 2 +x,解,得x=3 2 ,
∴ED=3,EO=4,
∴D(3,4).(1分)
(3)过点H作HP⊥OB,垂足为点P.
∵S△DOH:S△DHC=1:4,
∴S△DOH S△DHC =OH HC =1 4 ,(1分)
∵HP⊥OB,CB⊥OB,
∴HP∥BC,
∴OH OC =OP OB =PH BC =1 5 ,
∴OP=1,PH=1 2 ,
∴H(1,1 2 ),(1分)
∴经过点D(3,4),H(1,1 2 )的直线DG的表达式为y=7 4 x-5 4 ,(1分)
∴G(5,15| 2)
看了 已知,抛物线y=ax平方+b...的网友还看了以下:
一个很简单的微分中值定理运用题已知函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0) 2020-03-31 …
看图答题.(1)依次写出同一条直线上的点A、B、C、D、E、F的位置ABCDEF不看图,你能判定G 2020-05-16 …
十万火急!如图,有一个点在东西方向的直线上以固定的速度移动一个点在东西方向的直线上以固定的速度移动 2020-06-04 …
已经知道答案,但是所以想求详解,告诉我思路也可以.已知f1、f2是双曲线x^2-y^2=1的两个焦 2020-06-05 …
一道函数题急救.当天已知,A(3,a)是双曲线y12/x...只是,A(3,a)是双曲线y=12/ 2020-06-14 …
设u=u(x),v=v(x)都是可微函数,则d(uυ)=()A.udv+υdvB.u′dυ+u′d 2020-07-20 …
[0过曲线y=4乘以x的立方+x+1上的点(0,1)作切线,求此切线在区间[0,1]上的一段的长. 2020-07-31 …
已知点(0.1)、(3+2根号2.0)、(3-2根号2.0)在圆c上,求圆方程 2020-11-01 …
已知点(0,1),(3+2根号2,0),(3-2根号2,0)在圆C上,(1)求圆C的方程.(2)若圆 2020-11-01 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …