早教吧作业答案频道 -->数学-->
已知点E是正方形ABCD的中点,点F在AD上,且AF=1/4AD,求证:EC平分角BCF.AF为AD的四分之一.纠正:点E是正方形AB边的中点.
题目详情
已知点E是正方形ABCD的中点,点F在AD上,且AF=1/4AD,求证:EC平分角BCF.
AF为AD的四分之一.
纠正:点E是正方形AB边的中点.
AF为AD的四分之一.
纠正:点E是正方形AB边的中点.
▼优质解答
答案和解析
证明:为方便证明,设正方形的边长为4a,则有
AF=a,FD=3a,AE=BE=2a,
由勾股定理,得:
FC²=FD²+CD²=(3a)²+(4a)²=25a²
EC²=BC²+BE²=(4a)²+(2a)²=20a²
EF²=AF²+AE²=a²+(2a)²=5a²
在△ECF中,有:EF²+EC²=FC²,所以它是一个以∠FEC为直角的直角三角形,FC是斜边.
过E点作BC的平行线,交FC于G点,因AD平行于BC,AE=BE,则:FG=GC,
G是斜边FC的中点,因为‘直角三角形中,斜边中线等于斜边一半’,所以
EG=GC,则∠GCE=GEC,
因EG平行BC,所以∠GEC=∠BCE,
所以:∠GCE=∠BCE,即EC平分∠BCF.
AF=a,FD=3a,AE=BE=2a,
由勾股定理,得:
FC²=FD²+CD²=(3a)²+(4a)²=25a²
EC²=BC²+BE²=(4a)²+(2a)²=20a²
EF²=AF²+AE²=a²+(2a)²=5a²
在△ECF中,有:EF²+EC²=FC²,所以它是一个以∠FEC为直角的直角三角形,FC是斜边.
过E点作BC的平行线,交FC于G点,因AD平行于BC,AE=BE,则:FG=GC,
G是斜边FC的中点,因为‘直角三角形中,斜边中线等于斜边一半’,所以
EG=GC,则∠GCE=GEC,
因EG平行BC,所以∠GEC=∠BCE,
所以:∠GCE=∠BCE,即EC平分∠BCF.
看了 已知点E是正方形ABCD的中...的网友还看了以下:
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-04-05 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
matlab解中学三角函数方程数学题,不会求大大~~~~~~~~~~[a,b,c,A,B,C]=s 2020-05-14 …
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-06-24 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
100%收购公司其中一名法人股东涉及到的问题事实:A.B.C.D为四个法人。A.B公司为C公司的股东 2020-11-06 …
1+a四方小于等于2乘以b-c括号平方,1+b四方小于等于2乘以c-a括号平方,1+c四方小于等于2 2020-11-07 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
初三一道实验推断题,求教,A,B,C,D各是什么?有A,B,C,D四种单质,通常状况下.A,D是无色 2020-12-28 …