早教吧作业答案频道 -->数学-->
如图,平行四边形ABCD中,AB=CD,∠B≠∠C,M,N分别是BC,AD的中点,BA,CD的延长线分别交线MN于点E,F,求证∠BEM=∠CFM
题目详情
如图,平行四边形ABCD中,AB=CD,∠B≠∠C,M,N分别是BC,AD的中点,BA,CD的延长线分别交线MN于点E,F,求证∠BEM=∠CFM
▼优质解答
答案和解析
题目一开始写错了吧,四边形ABCD不该是平行四边形的啊.
证明:连结BD,取BD中点H,再连结HM、HN.
因为.M是BC的中点,H是BD的中点,
所以.HM是三角形BCD的中位线,
所以.HM=CD的一半,HM平行于CD,
同理:.HN=AB的一半,HN平行于AB,
因为.AB=CD,
所以.HM=HN,
所以.角HMN=角HNM,
因为.HM平行于CD,HN平行于AB,
所以.角CFM=角HMN,角BEM=角HNM,
所以.角BEM=角CFM.
证明:连结BD,取BD中点H,再连结HM、HN.
因为.M是BC的中点,H是BD的中点,
所以.HM是三角形BCD的中位线,
所以.HM=CD的一半,HM平行于CD,
同理:.HN=AB的一半,HN平行于AB,
因为.AB=CD,
所以.HM=HN,
所以.角HMN=角HNM,
因为.HM平行于CD,HN平行于AB,
所以.角CFM=角HMN,角BEM=角HNM,
所以.角BEM=角CFM.
看了 如图,平行四边形ABCD中,...的网友还看了以下:
现有A、B、C、D、E、F六种短周期元素,它们的原子序数依次增大.①A、D同主族,C与E同主族,D 2020-04-08 …
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
对于函数f(x),若对于任意的a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则 2020-06-08 …
(2014•烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC, 2020-06-12 …
已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a 2020-07-11 …
如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形边上.(1) 2020-07-15 …
对于函数f(x),若对于任意的a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则 2020-07-16 …
如果凸n边形F(n≥4)的所有对角线都相等,那么A.F∈{四边形}B.F∈{五边形}C.F∈{四边 2020-07-25 …
个图①,△ABC是等腰直角三角形,AC=BC=4,∠ACB=90°,你,F分别是AC,AB的中点,将 2020-11-02 …
(2/3)角形ABC的内角A,B,C,的对边分别为a,b,c,且c=√3,f(C)=0,若2sinA 2020-12-07 …