早教吧作业答案频道 -->数学-->
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.设直线l与椭圆C交与A,B两点,坐标原点O到直线l的距离为√3/2,求△AOB面积的最大值.
题目详情
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.
设直线l与椭圆C交与A,B两点,坐标原点O到直线l的距离为√3/2,求△AOB面积的最大值.
设直线l与椭圆C交与A,B两点,坐标原点O到直线l的距离为√3/2,求△AOB面积的最大值.
▼优质解答
答案和解析
由于椭圆C:x^2/a^2+y^2/b^2=1
则:椭圆的焦点在X轴上
由于:短轴一个端点到右焦点的距离为√3
则由图像可知:
b^2+c^2=3=a^2
则:a=√3
又:离心率为√6/3=c/a
则:c=√2,则:b=1
则椭圆C:x^2/3+y^2=1
设直线l:y=kx+b
由于:坐标原点O到直线l的距离d为√3/2
则由点到直线距离公式,得:
d=√3/2=|b|/√[k^2+1]
则:b^2=(3/4)(k^2+1)
由于:直线l与椭圆C交与A,B两点
则设A(x1,y1)B(x2,y2)
则由直线和椭圆相交弦长公式,得:
|AB|
=√[k^2+1]*|x1-x2|
=√[k^2+1]*√[(x1+x2)^2-4x1x2]
由于:
椭圆C:x^2/3+y^2=1
直线l:y=kx+b
则联立可得:
x^2/3+(kx+b)^2=1
[(1+3k^2)/3]x^2+2kbx+b^2-1=0
由于:A,B为其交点,
则x1,x2为方程的两根
则由韦达定理,得:
x1+x2=-6kb/(1+3k^2)
x1x2=(9k^2-3)/(12k^2+4)
则:
|AB|=√[k^2+1]*√[(x1+x2)^2-4x1x2]
=√[k^2+1]*√[36k^2b^2/(3k^2+1)^2-(36k^2-12)/(12k^2+4)]
=√[k^2+1]*√{[27k^2(k^2+1)-3(3k^2-1)(3k^2+1)]/(3k^2+1)^2}
=√{[k^2+1]*[27k^2+3]/[(3k^2+1)^2]}
=√{[27k^4+30k^2+3]/[(3k^2+1)^2]}
=√{[3(3k^2+1)^2+4(3k^2+1)-4]/[(3k^2+1)^2]}
=√{3+4/(3k^2+1)-4/[(3k^2+1)^2]}
设:t=1/(3k^2+1) (t属于(0,1])
则:
|AB|=√[3+4t-4t^2]
=√[-4(t-1/2)^2+4]
则当t=1/2时,|AB|取最大值=2
此时k=±√3/3
则:
△AOB面积的最大值
=(1/2)|AB|最大值*d
=(1/2)*2*(√3/2)
=√3/2
则:椭圆的焦点在X轴上
由于:短轴一个端点到右焦点的距离为√3
则由图像可知:
b^2+c^2=3=a^2
则:a=√3
又:离心率为√6/3=c/a
则:c=√2,则:b=1
则椭圆C:x^2/3+y^2=1
设直线l:y=kx+b
由于:坐标原点O到直线l的距离d为√3/2
则由点到直线距离公式,得:
d=√3/2=|b|/√[k^2+1]
则:b^2=(3/4)(k^2+1)
由于:直线l与椭圆C交与A,B两点
则设A(x1,y1)B(x2,y2)
则由直线和椭圆相交弦长公式,得:
|AB|
=√[k^2+1]*|x1-x2|
=√[k^2+1]*√[(x1+x2)^2-4x1x2]
由于:
椭圆C:x^2/3+y^2=1
直线l:y=kx+b
则联立可得:
x^2/3+(kx+b)^2=1
[(1+3k^2)/3]x^2+2kbx+b^2-1=0
由于:A,B为其交点,
则x1,x2为方程的两根
则由韦达定理,得:
x1+x2=-6kb/(1+3k^2)
x1x2=(9k^2-3)/(12k^2+4)
则:
|AB|=√[k^2+1]*√[(x1+x2)^2-4x1x2]
=√[k^2+1]*√[36k^2b^2/(3k^2+1)^2-(36k^2-12)/(12k^2+4)]
=√[k^2+1]*√{[27k^2(k^2+1)-3(3k^2-1)(3k^2+1)]/(3k^2+1)^2}
=√{[k^2+1]*[27k^2+3]/[(3k^2+1)^2]}
=√{[27k^4+30k^2+3]/[(3k^2+1)^2]}
=√{[3(3k^2+1)^2+4(3k^2+1)-4]/[(3k^2+1)^2]}
=√{3+4/(3k^2+1)-4/[(3k^2+1)^2]}
设:t=1/(3k^2+1) (t属于(0,1])
则:
|AB|=√[3+4t-4t^2]
=√[-4(t-1/2)^2+4]
则当t=1/2时,|AB|取最大值=2
此时k=±√3/3
则:
△AOB面积的最大值
=(1/2)|AB|最大值*d
=(1/2)*2*(√3/2)
=√3/2
看了 椭圆C:x^2/a^2+y^...的网友还看了以下:
按一定顺序排列.①3.143.1423.1•43.•1•4π2273.1•4>227>3.142> 2020-05-02 …
已知一次函数y=3x+6.(1)直线与x轴,y轴交点的坐标是__,__.(2)求出直线与坐标轴所围 2020-05-13 …
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的焦距为2√3,长轴长是短轴长的2倍( 2020-05-15 …
请写出下列题目的过程,明天老师批改作业,对了给再给10个财富值.解下列不等式,并将它们的解集在数轴 2020-05-23 …
急..函数f(x)=ax^2+bx+c的图像与x轴的交点坐标为(-3,0),(1,0),在y轴上的 2020-06-02 …
已知点P(1,3√5/2)在椭圆:x²/a²+y²/b²=1(a>b>0)上,且该椭圆的离心率为1 2020-06-30 …
如果不等式组两个解集同号怎么在数轴上表示?就比如不等式组x>3,x>2是在数轴上单独表示x>3的解 2020-07-29 …
在平面直角坐标系xOy中,A(0,m)B(0,n)m>n>0.P为x轴正半轴上的一个动点,当∠AP 2020-07-30 …
如图,直线y=x+b(b>0)分别与y轴x,轴交与点A,C,与反比例函数y=kx(x>0)的图象交 2020-08-02 …
已知A、B两点在数轴上的位置如图所示,C是数轴上的另外一点,设点A、B、C对应的有理数分别为a、b、 2020-11-01 …