早教吧作业答案频道 -->数学-->
桥函数法二次函数迭代许多书上都有介绍桥函数法的二次函数迭代.比如二次函数f(x)=ax^2+bx+c(a≠0)令g(x)=ax^2h(x)=x-k(k为f(x)不动点)则fn(x)=h^(-1)(gn(h(x)))(*)但我看不懂,比如n=1时代入就不一定
题目详情
桥函数法二次函数迭代
许多书上都有介绍桥函数法的二次函数迭代.
比如二次函数f(x)=ax^2+bx+c (a≠0)
令g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
则fn(x)=h^(-1)(gn(h(x))) (*)
但我看不懂,比如n=1时代入就不一定成立.
还有,若要(*)式成立,则k=-(b/2a),k又要是不动点,这如何做到?
如果k=-(b/2a),则(*)式右显然与c无关,但(*)式左又与c有关,这是怎么回事?
望高手指教,谢谢.
许多书上都有介绍桥函数法的二次函数迭代.
比如二次函数f(x)=ax^2+bx+c (a≠0)
令g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
则fn(x)=h^(-1)(gn(h(x))) (*)
但我看不懂,比如n=1时代入就不一定成立.
还有,若要(*)式成立,则k=-(b/2a),k又要是不动点,这如何做到?
如果k=-(b/2a),则(*)式右显然与c无关,但(*)式左又与c有关,这是怎么回事?
望高手指教,谢谢.
▼优质解答
答案和解析
实际上,楼主所说的桥函数迭代法的具体定义是
如果f(x)=h(-1)(g(h(x))),就会有fn(x)=h(-1)(gn(h(x))),其中fn,gn是f,g的n次迭代,证明可以用数学归纳法,注意到x=h(-1)(h(x))就比较容易了.
至于楼主所说问题,不是所有的二次函数的迭代都可以比较简单的表示出来.
如果f(x)=ax^2+bx+c (a≠0) g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
并且f(x)=h(-1)(g(h(x))),能推出f(x)的Δ=0,这时的fn(x)是可以表示的(因为ax^2的迭代比较容易计算)
如果f(x)=h(-1)(g(h(x))),就会有fn(x)=h(-1)(gn(h(x))),其中fn,gn是f,g的n次迭代,证明可以用数学归纳法,注意到x=h(-1)(h(x))就比较容易了.
至于楼主所说问题,不是所有的二次函数的迭代都可以比较简单的表示出来.
如果f(x)=ax^2+bx+c (a≠0) g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
并且f(x)=h(-1)(g(h(x))),能推出f(x)的Δ=0,这时的fn(x)是可以表示的(因为ax^2的迭代比较容易计算)
看了 桥函数法二次函数迭代许多书上...的网友还看了以下:
无论a取何实数,下列式子总能因式分解的是什么无论a取何实数,下列式子总能因式分解的是(A.ax^2 2020-05-13 …
桥函数法二次函数迭代许多书上都有介绍桥函数法的二次函数迭代.比如二次函数f(x)=ax^2+bx+ 2020-05-16 …
真分式拆分待定系数法的疑惑题目是1/[(x^2+1)(x+1)]拆分.用待定系数法ax+b/(x^ 2020-06-03 …
证明函数非奇非偶比如f(x)=ax+1/x²,参考答案写的是当a≠0时、用特殊数值法取f(1)得出 2020-06-05 …
雅克比迭代法的迭代矩阵J是Bx+f中的B,那高斯-赛德尔迭代法的迭代矩阵G,好像和J是一样的?是怎 2020-06-07 …
已知f(x)=x²-ax+b,(a,b∈R),A={x丨f(x)-x=0,x∈R},B={x丨f( 2020-08-01 …
已知f(x)=x2-ax+b(a,b∈R),A={x|f(x)-x=0,x∈R},B={x|f(x 2020-08-01 …
求高等数学不定积分设随机变量X的概率密度为f(x)={①ax+1,0≦x≦2②0求A∫(ax+1) 2020-08-02 …
悬赏50分.数列叠加法和迭乘法问题.数列叠加法和迭乘法问题.到最后一步叠加迭乘法怎么数清最后n的个数 2020-11-24 …
设函数f(x)=e^x-1-x-ax^2若当x>=0时,f(x)>=0,求a的取值范围我做的过程是令 2020-12-27 …