早教吧作业答案频道 -->数学-->
桥函数法二次函数迭代许多书上都有介绍桥函数法的二次函数迭代.比如二次函数f(x)=ax^2+bx+c(a≠0)令g(x)=ax^2h(x)=x-k(k为f(x)不动点)则fn(x)=h^(-1)(gn(h(x)))(*)但我看不懂,比如n=1时代入就不一定
题目详情
桥函数法二次函数迭代
许多书上都有介绍桥函数法的二次函数迭代.
比如二次函数f(x)=ax^2+bx+c (a≠0)
令g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
则fn(x)=h^(-1)(gn(h(x))) (*)
但我看不懂,比如n=1时代入就不一定成立.
还有,若要(*)式成立,则k=-(b/2a),k又要是不动点,这如何做到?
如果k=-(b/2a),则(*)式右显然与c无关,但(*)式左又与c有关,这是怎么回事?
望高手指教,谢谢.
许多书上都有介绍桥函数法的二次函数迭代.
比如二次函数f(x)=ax^2+bx+c (a≠0)
令g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
则fn(x)=h^(-1)(gn(h(x))) (*)
但我看不懂,比如n=1时代入就不一定成立.
还有,若要(*)式成立,则k=-(b/2a),k又要是不动点,这如何做到?
如果k=-(b/2a),则(*)式右显然与c无关,但(*)式左又与c有关,这是怎么回事?
望高手指教,谢谢.
▼优质解答
答案和解析
实际上,楼主所说的桥函数迭代法的具体定义是
如果f(x)=h(-1)(g(h(x))),就会有fn(x)=h(-1)(gn(h(x))),其中fn,gn是f,g的n次迭代,证明可以用数学归纳法,注意到x=h(-1)(h(x))就比较容易了.
至于楼主所说问题,不是所有的二次函数的迭代都可以比较简单的表示出来.
如果f(x)=ax^2+bx+c (a≠0) g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
并且f(x)=h(-1)(g(h(x))),能推出f(x)的Δ=0,这时的fn(x)是可以表示的(因为ax^2的迭代比较容易计算)
如果f(x)=h(-1)(g(h(x))),就会有fn(x)=h(-1)(gn(h(x))),其中fn,gn是f,g的n次迭代,证明可以用数学归纳法,注意到x=h(-1)(h(x))就比较容易了.
至于楼主所说问题,不是所有的二次函数的迭代都可以比较简单的表示出来.
如果f(x)=ax^2+bx+c (a≠0) g(x)=ax^2 h(x)=x-k (k为f(x)不动点)
并且f(x)=h(-1)(g(h(x))),能推出f(x)的Δ=0,这时的fn(x)是可以表示的(因为ax^2的迭代比较容易计算)
看了 桥函数法二次函数迭代许多书上...的网友还看了以下:
如何理解复合函数F(x)=f(u(x)),如果u(x)为偶函数,则F(x)为偶函数;如果u(x)为 2020-05-16 …
(高一函数) f(x)-f(-x) f(-x)-f(x) f(x)+f(-x) f(x)f(-x) 2020-05-16 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
复合函数奇偶性质的证明对于复合函数F(x)=f[g(x)](1)若g(x)为偶函数,则F(x)为偶 2020-06-08 …
已知定义域为R的函数f(x)在区间(8,+∞)上为减函数,且函数y=f(x+8)为偶函数则()A. 2020-06-08 …
f(x)是R上的函数,若f(x+1)和f(x-1)都是奇函数,则下列判断正确的是1、f(x)是偶函 2020-06-08 …
函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x))=x^1/ 2020-06-09 …
有一部搞不懂已知函数f(x)为偶函数,g(x)为奇函数,且f(x)+g(x)=x^2+2x+3,求 2020-06-26 …
抽象函数模型函数证明为什么百科中只给出了f(xy)=f(x)f(y)具体化为幂函数的证明幂函数:f 2020-07-19 …
设是连续函数,是的原函数,则下列结论正确的是:A.当f(x)是奇函数时,F(x)必是偶函数;B当f 2020-08-01 …