早教吧作业答案频道 -->数学-->
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0. (1)求a,b的值;(2)在X如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0. (1)求a,b的值;(2)在X
题目详情
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0. (1)求a,b的值;(2)在X
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0.
(1)求a,b的值;(2)在X轴的正半轴上存在一点M,使▷COM的面积=1/2▷ABC的面积,求出点M的坐标;在坐标轴的其他位置是否存在点M,使▷COM的面积=1/2▷ABC的面积仍然成立,若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥Y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,∠OPD/∠DOE的值是否会改变?若不变,求其值;若改变,说明理由.
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0.
(1)求a,b的值;(2)在X轴的正半轴上存在一点M,使▷COM的面积=1/2▷ABC的面积,求出点M的坐标;在坐标轴的其他位置是否存在点M,使▷COM的面积=1/2▷ABC的面积仍然成立,若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥Y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,∠OPD/∠DOE的值是否会改变?若不变,求其值;若改变,说明理由.

▼优质解答
答案和解析
(1)∵|2a+b+1|+(a+2b-4)²=0.
∴2a+b+1=0,且a+2b-4=0.
解得:a= -2,b=3.
(2)∵S⊿COM/S⊿CAB=1/2.
∴OM/AB=1/2;(同高的三角形面积比等于底边之比)
∴OM=AB/2=[3-(-2)]/2=5/2,即X轴正半轴上的点M为(5/2,0);
在X轴负半轴上有符合条件的点M,为(-5/2,0);
在Y轴正半轴上有符合条件的点M,为(0,5);
在Y轴负半轴上有符合条件的点M,为(0,-5).
(3)∠OPD/∠DOE的值不变,总等于2.
设垂直于OE的直线OF交直线CP于F.
∵∠EOF=∠DOB=90°(已知)
∴∠DOE=∠BOF;
∵2∠POE+2∠POF=2(∠POE+∠POF)=180°,即∠POA+2∠POF=180°;
又∠POA+∠POF+∠BOF=180°.(平角的定义)
∴∠POF=∠BOF,故∠POB=2∠BOF=2∠DOE;
又PD∥OP,故∠OPD=∠POB=2∠DOE,∠OPD/∠DOE=2.
∴2a+b+1=0,且a+2b-4=0.
解得:a= -2,b=3.
(2)∵S⊿COM/S⊿CAB=1/2.
∴OM/AB=1/2;(同高的三角形面积比等于底边之比)
∴OM=AB/2=[3-(-2)]/2=5/2,即X轴正半轴上的点M为(5/2,0);
在X轴负半轴上有符合条件的点M,为(-5/2,0);
在Y轴正半轴上有符合条件的点M,为(0,5);
在Y轴负半轴上有符合条件的点M,为(0,-5).
(3)∠OPD/∠DOE的值不变,总等于2.
设垂直于OE的直线OF交直线CP于F.
∵∠EOF=∠DOB=90°(已知)
∴∠DOE=∠BOF;
∵2∠POE+2∠POF=2(∠POE+∠POF)=180°,即∠POA+2∠POF=180°;
又∠POA+∠POF+∠BOF=180°.(平角的定义)
∴∠POF=∠BOF,故∠POB=2∠BOF=2∠DOE;
又PD∥OP,故∠OPD=∠POB=2∠DOE,∠OPD/∠DOE=2.
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
压强计算题,非常急~长方形合金密度为3.3乘以10的3次方千克每立方米,底面积为4乘以10的负2次 2020-05-14 …
已知一组样本数据a1,a2,a3,a4的平均数为2,且a1平方+a2平方+a3平方+a4平方=28 2020-05-16 …
若向量a=(cosx/2,√3/2-cosx/2),b=(√3/2+cosx/2,sinx/2), 2020-05-21 …
求过直线X-2=Y-3=(Z-4)/2且与平面2X+Y+Z-6=0垂直的平面方程 2020-06-23 …
求过点(1,-1,2)且与平面x-4z-2=0和2x+y-z=1平行的直线方程 2020-07-22 …
一道高数题求解求球心在M(3,-5,-2)且与平面2x-y-3z+11=0相切的球面方程. 2020-07-31 …
求过l=x-1/2=y+2/-3=z-2/2且与平面X-2Y+X-6=0垂直的平面方程式 2020-11-01 …
三阶方阵A有三个特征值-1,1,2且方阵A与方阵B有相同的特征值,则不正确的是A:A与B等价B:三阶 2020-11-03 …
一道古典概型的问题,为什么我怎么算答案都是13/19,难道总的情况中不需要去掉m、n同时小于0的情况 2020-11-03 …
线性代数题目向量a=(1,2,3)与b=(2,k,6)正交则k为.求解题方法已知A平方+A+E=0则 2020-11-11 …