早教吧作业答案频道 -->数学-->
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0. (1)求a,b的值;(2)在X如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0. (1)求a,b的值;(2)在X
题目详情
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0. (1)求a,b的值;(2)在X
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0.
(1)求a,b的值;(2)在X轴的正半轴上存在一点M,使▷COM的面积=1/2▷ABC的面积,求出点M的坐标;在坐标轴的其他位置是否存在点M,使▷COM的面积=1/2▷ABC的面积仍然成立,若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥Y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,∠OPD/∠DOE的值是否会改变?若不变,求其值;若改变,说明理由.
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)的平方=0.
(1)求a,b的值;(2)在X轴的正半轴上存在一点M,使▷COM的面积=1/2▷ABC的面积,求出点M的坐标;在坐标轴的其他位置是否存在点M,使▷COM的面积=1/2▷ABC的面积仍然成立,若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥Y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,∠OPD/∠DOE的值是否会改变?若不变,求其值;若改变,说明理由.
▼优质解答
答案和解析
(1)∵|2a+b+1|+(a+2b-4)²=0.
∴2a+b+1=0,且a+2b-4=0.
解得:a= -2,b=3.
(2)∵S⊿COM/S⊿CAB=1/2.
∴OM/AB=1/2;(同高的三角形面积比等于底边之比)
∴OM=AB/2=[3-(-2)]/2=5/2,即X轴正半轴上的点M为(5/2,0);
在X轴负半轴上有符合条件的点M,为(-5/2,0);
在Y轴正半轴上有符合条件的点M,为(0,5);
在Y轴负半轴上有符合条件的点M,为(0,-5).
(3)∠OPD/∠DOE的值不变,总等于2.
设垂直于OE的直线OF交直线CP于F.
∵∠EOF=∠DOB=90°(已知)
∴∠DOE=∠BOF;
∵2∠POE+2∠POF=2(∠POE+∠POF)=180°,即∠POA+2∠POF=180°;
又∠POA+∠POF+∠BOF=180°.(平角的定义)
∴∠POF=∠BOF,故∠POB=2∠BOF=2∠DOE;
又PD∥OP,故∠OPD=∠POB=2∠DOE,∠OPD/∠DOE=2.
∴2a+b+1=0,且a+2b-4=0.
解得:a= -2,b=3.
(2)∵S⊿COM/S⊿CAB=1/2.
∴OM/AB=1/2;(同高的三角形面积比等于底边之比)
∴OM=AB/2=[3-(-2)]/2=5/2,即X轴正半轴上的点M为(5/2,0);
在X轴负半轴上有符合条件的点M,为(-5/2,0);
在Y轴正半轴上有符合条件的点M,为(0,5);
在Y轴负半轴上有符合条件的点M,为(0,-5).
(3)∠OPD/∠DOE的值不变,总等于2.
设垂直于OE的直线OF交直线CP于F.
∵∠EOF=∠DOB=90°(已知)
∴∠DOE=∠BOF;
∵2∠POE+2∠POF=2(∠POE+∠POF)=180°,即∠POA+2∠POF=180°;
又∠POA+∠POF+∠BOF=180°.(平角的定义)
∴∠POF=∠BOF,故∠POB=2∠BOF=2∠DOE;
又PD∥OP,故∠OPD=∠POB=2∠DOE,∠OPD/∠DOE=2.
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
已知函数f(x)=sinx+acos平方2分之x,a为常数,a∈R且x=2分之兀是方程f(x)=0 2020-05-13 …
x^3+(2a+1)x^2+(a^+2a-1)x+a^2-1 2020-05-16 …
设A、B是非空集合,定义A●B={x|x∈A∪B,且x不属于A∩B},已知A={x|x/(x-2) 2020-05-16 …
1.x^4+3x²y²+4y^4 2.x^4+4 3.x²-2x-a²+2a 4.(x+y)²-4 2020-05-16 …
设全集为U=R,集合A={x|(x+3)(6-x)≤0},B={x|log2(x+2)<4}.(1 2020-06-16 …
省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x) 2020-06-21 …
线性代数填空题1.已知向量a1=(5,-2,4),a2=(0,1,K)当K=时,a1与a2正交2. 2020-08-01 …
设A.B是非空集合,定义A×B={X|X∈A∪B,且X不属于A∩B}.已知A={y|y=√3+2设 2020-08-01 …
已知lim(x→∞)(x+a/x-a)^x=4,则a=?我已经算到lim(x+a/x-a)^x=li 2020-10-31 …
已知函数f(x)=x²-(a²-2a-1)x-a-2在[1,+∞)上是增函数.(1)求a的取值范围( 2020-12-08 …