早教吧作业答案频道 -->数学-->
已知a,b∈R,函数f(x)=ax²+bx+1的值域为[0,+∞),且f(-1)=0.(1)求a,b的值;(2)若函数g(x)=f(x)-kx,x∈[-2,2]是单调函数,求实数k的取值范围.
题目详情
已知a,b∈R,函数f(x)=ax²+bx+1的值域为[0,+∞),且f(-1)=0.(1)求a,b的值;(2)若函数g(x)=f(x)-kx,x∈[-2,2]是单调函数,求实数k的取值范围.
▼优质解答
答案和解析
1、
f(-1)=a-b+1=0
b=a+1
所以f(x)=ax²+(a+1)x+1
=a[x+(a+1)/2a]²+1-(a+1)²/4a
最小值=0
所以1-(a+1)²/4a=0
a²-2a+1=0
(a-1)²=0
a=1,b=a+1=2
2、
f(x)=x²+2x+1
g(x)=x²+(2-k)x+1
x属于[-2,2]是单调函数
所以对称轴x=-(2-k)/2不在这个区间
所以-(2-k)/22
所以k6
f(-1)=a-b+1=0
b=a+1
所以f(x)=ax²+(a+1)x+1
=a[x+(a+1)/2a]²+1-(a+1)²/4a
最小值=0
所以1-(a+1)²/4a=0
a²-2a+1=0
(a-1)²=0
a=1,b=a+1=2
2、
f(x)=x²+2x+1
g(x)=x²+(2-k)x+1
x属于[-2,2]是单调函数
所以对称轴x=-(2-k)/2不在这个区间
所以-(2-k)/22
所以k6
看了 已知a,b∈R,函数f(x)...的网友还看了以下:
函数单调性和严格单调性的区别(1)常数函数x=2是单调函数么,如果是,是单调增还是单调减呢(2)单 2020-04-26 …
f(x)=log2(1+bx/1+x)(b不等于0)为奇函数 1,求函数的单调区间 2,解不等式f 2020-05-14 …
单调增和严格的单调增问题单调函数中Y=2x(0≤x≤2)4(2≤x≤4)2x(4≤x6)那可以说这 2020-05-17 …
有一个网络号为198.150.11.0的单位,现调整为2个部门,2个部门的人数分别为45,60人, 2020-06-03 …
已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则()A.f(0)<f( 2020-06-26 …
已知函数f(x)=lnx+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0 2020-07-20 …
1.若x为三角形中的最小内角,则函数y=sinx+cosx的值域是A.(1,√2]B.(0,√3/ 2020-07-30 …
dy=1-cosx>0在(0至2派)怎么大于零y`=1-cosx>0在(0至2派)内.x取0时和取 2020-08-01 …
设定义在R上的函数f(x)是最小正周期为2π的偶函数,当x∈[0,π]时,0<f(x)<1,且在[ 2020-08-03 …
已知函数f(x)=2sin(2x+派/6)+a+1(其中a为常数)(1)求f(x)的单调区间;(2) 2020-11-10 …