早教吧作业答案频道 -->数学-->
函数在0到1的闭区间内二阶导数大于0选择:a.f'(1)>f'(0)>f(1)—f(0)b.f'(1)>f(1)—f(0)>f'(0)c.f(1)—f(0)>f'(1)>f'(0)d.f'(1)>f(0)—f(1)>f'(0)
题目详情
函数在0到1的闭区间内二阶导数大于0选择:a.f'(1)>f'(0)>f(1)—f(0)
b.f'(1)>f(1)—f(0)>f'(0)
c.f(1)—f(0)>f'(1)>f'(0)
d.f'(1)>f(0)—f(1)>f'(0)
b.f'(1)>f(1)—f(0)>f'(0)
c.f(1)—f(0)>f'(1)>f'(0)
d.f'(1)>f(0)—f(1)>f'(0)
▼优质解答
答案和解析
函数f(x)在0到1的闭区间内二阶导数大于0
表明函数f(x)在0到1的闭区间内一阶导数f'(x)是增函数,显然f'(1)>f'(0)
且函数f(x)在0到1的闭区间内是(向上)凹函数
f(1)-f(0)=[f(1)-f(0)]/(1-0)=k
是过端点A(0,f(0))和B(1,f(1))的弦AB的斜率k,
k等于与弦AB平行且与这段抛物线弧相切的切线斜率,因此,它介于f'(1)与f'(0)之间.Lagrange中值定理可以说明这一点.
选B
表明函数f(x)在0到1的闭区间内一阶导数f'(x)是增函数,显然f'(1)>f'(0)
且函数f(x)在0到1的闭区间内是(向上)凹函数
f(1)-f(0)=[f(1)-f(0)]/(1-0)=k
是过端点A(0,f(0))和B(1,f(1))的弦AB的斜率k,
k等于与弦AB平行且与这段抛物线弧相切的切线斜率,因此,它介于f'(1)与f'(0)之间.Lagrange中值定理可以说明这一点.
选B
看了 函数在0到1的闭区间内二阶导...的网友还看了以下:
已知函数f(x)=(a-1/2)x^2+lnx.(a属于R)当a=1时,求f(x)在区间1到e的闭 2020-04-05 …
1.设X为距离空间,A属于X,令f(x)=infp(x,y)(x属于X,y属于A),试证明f(x) 2020-06-11 …
设函数f(X)在负无穷到正无穷上满足f(2-X)=f(2+x),f(7-x)=f(7+x),且在闭 2020-06-14 …
SOS已知函数f(x)=sin二分之x乘以cos二分之x+cos²x-2(1)将函数f(x)化简成 2020-07-09 …
关于导数的一道证明题已知函数f(x)在闭区间0到正无穷上连续,且f(0)=0,f'(x)在闭区间0 2020-07-19 …
请教关于介值定理到底用在开区间还是闭区间同济的教材上,定理表述为闭区间[a,b]上的连续函数f(x 2020-08-01 …
设f(x)在闭区间0到1上连续,在开区间0到1内可微.且f(0)=f(1)=0,f(1/2)=1, 2020-08-01 …
函数f(x)在闭区间[a,b]上连续,证明:若[f(x)]^2从a到b的定积分等于0,则f(x)函 2020-08-01 …
已知函数f(x)的定义域为闭区间-1到1,若对于任意的x,y属于闭区间-1到1,都有f(x+y)= 2020-08-01 …
根据情景进行描写。两位高中生寒假期间在到建筑工地打工做粗活,遇到他们的熟人后,两人表现各异:其中甲同 2020-12-01 …