早教吧作业答案频道 -->数学-->
在正方体ABCD-A1B1C1D1中,已知E,F分别为BC,A1D1的中点1,在正方体ABCD-A1B1C1D1中,已知E,F分别为BC,A1D1的中点(1)求证:DEB1F为菱形(2)求AD与平面DEB1F所成的角 (π/2)-arccos√6/3(3)求二面角A-DE-F的大小 arccos√6/3
题目详情
在正方体ABCD-A1B1C1D1中,已知E,F分别为BC,A1D1的中点
1,在正方体ABCD-A1B1C1D1中,已知E,F分别为BC,A1D1的中点
(1)求证:DEB1F为菱形
(2)求AD与平面DEB1F所成的角 (π/2)-arccos√6/3
(3)求二面角A-DE-F的大小 arccos√6/3
1,在正方体ABCD-A1B1C1D1中,已知E,F分别为BC,A1D1的中点
(1)求证:DEB1F为菱形
(2)求AD与平面DEB1F所成的角 (π/2)-arccos√6/3
(3)求二面角A-DE-F的大小 arccos√6/3
▼优质解答
答案和解析
1、(1)、设棱长为a,根据勾股定理,B1E=√[a^2+(a/2)^2]= √5a/2,同理DE=DF=B1F=B1E=√5a/2,四边皆相等,故四边形DEB1F为菱形.
(2)作AQ⊥DB1,AF=AE=√5a/2,△AEF是等腰△,AM⊥EF,EF⊥A1D1,EF⊥AD,EF⊥平面ADMB1,AQ∈平面DAB1,AQ⊥EF,AQ⊥平面DEB1F,AQ就是斜线AD在平面DEB1F的射影,(3)、设正方形棱长为1,从E作EN⊥AD,连结FN,EN⊥平面ADD1A1,三角形FND是三角形FDE的射影,设二面角A-DE-F的平面角为α,S△FND= S△FDE*cosα,S△FDE=EF*DM/2,EF=√2,DM=B1D/2=√3/2, S△FDE=√6/4,S△FDN=1/4,cosα=1/4/(√6/4)=√6/6,
α=arcos(√6/6), 二面角A-DE-F的大小为arcos(√6/6).
(2)作AQ⊥DB1,AF=AE=√5a/2,△AEF是等腰△,AM⊥EF,EF⊥A1D1,EF⊥AD,EF⊥平面ADMB1,AQ∈平面DAB1,AQ⊥EF,AQ⊥平面DEB1F,AQ就是斜线AD在平面DEB1F的射影,
α=arcos(√6/6), 二面角A-DE-F的大小为arcos(√6/6).

看了 在正方体ABCD-A1B1C...的网友还看了以下:
已知a,b,c分别是三角形ABC的三个内角A,B,C所对的边,1若三角形ABC面积=根号3/2,c 2020-04-05 …
若a,x属于R,集合A={2,4,x^2减5x+9},B={3,x^2+ax+a},C={x^2+ 2020-04-05 …
已知a,b,c分别是三角形ABC的三个内角A,B,C所对的边,1若三角形ABC面积=根号3/2,c 2020-04-05 …
已知a+b+c=4.3ab+3bc+3ac=12求a^2+b^2+c^2的值(^2已知a+b+c= 2020-04-26 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
已知a=10000,b=9999,求a^2+b^2-2ab-6a+6b+92.已知a,b,c为三角 2020-07-19 …
1:设a,b,c都是正数,且3的a次方=4的b次方=6的c次方,则:()A.1/c=(1/a)+( 2020-07-30 …
利用(a+b+c)^2=a^2+b^2^c^2+2ab+2ac+abc,推导(a+b+c)^2+a 2020-07-30 …
(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB=0(a^2-b^2-c^2 2020-08-02 …
质数的平方仍是质数吗?已知a,b,c分别是直角三角形的三边,c是斜边,a,b,c是正整数,且a是质数 2020-12-09 …