早教吧作业答案频道 -->数学-->
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=根号2/2AD、...如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=根号2/2AD,若E、F分别为PC、BD的
题目详情
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=根号2/2AD、...
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=根号2/2AD,若E、F分别为PC、BD的中点.(1)求证:直线EF∥平面PAD;(要求空间向量法做)
(2)求证:平面PDC⊥平面PAD(要求空间向量法做)

如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=根号2/2AD,若E、F分别为PC、BD的中点.(1)求证:直线EF∥平面PAD;(要求空间向量法做)
(2)求证:平面PDC⊥平面PAD(要求空间向量法做)

▼优质解答
答案和解析
(1)以AD为 y 轴,AD的中点O为坐标原点,以 OF为 x 轴、OP为 z 轴建立直角坐标系;
有关点的坐标计算如下:P(0,0,a/2)、F(a/2,0,0)、E(a/2,a/4,a/4)、D(0,a/2,0)、C(a,a/2,0);
向量EF={0,a/4,a/4},而侧立面PAD的法向量就是 向量OF{a/2,0,0}(已知PAD⊥底面ABCD,而 OP⊥AD、OF⊥OP、OF⊥AD);
向量EF•向量OF=0*(a/2)+(a/4)*0+(a/4)*0=0,∴ EF⊥OF,从而 EF∥平面PAD;
(2)向量DC={a,0,0},与平面APD的法向量平行,DC可看作平面PAD的一条法线,故 平面PCD⊥平面PAD;
有关点的坐标计算如下:P(0,0,a/2)、F(a/2,0,0)、E(a/2,a/4,a/4)、D(0,a/2,0)、C(a,a/2,0);
向量EF={0,a/4,a/4},而侧立面PAD的法向量就是 向量OF{a/2,0,0}(已知PAD⊥底面ABCD,而 OP⊥AD、OF⊥OP、OF⊥AD);
向量EF•向量OF=0*(a/2)+(a/4)*0+(a/4)*0=0,∴ EF⊥OF,从而 EF∥平面PAD;
(2)向量DC={a,0,0},与平面APD的法向量平行,DC可看作平面PAD的一条法线,故 平面PCD⊥平面PAD;
看了 如图,在四棱锥P-ABCD中...的网友还看了以下:
提示:D-C=0A-B,A-D,D-C,D-E,E-F=1A-D,C-F=2A-B,D-E,E-F 2020-04-06 …
一个栈的入栈序列是a b c d e,则栈不可能的输出序列是( )。A.e d c b a B.d 2020-05-23 …
设实数a,b,c,d,e满足(a+c)(a+d)=(b+c)(b+d)=e≠O,且a≠b,那么(a 2020-06-08 …
如图,已知A、B、C、D、E、F、G、H、J、K是10个互不相等的非零自然数,并且A=B+C,B= 2020-06-12 …
如图1,若AB∥CD,则有∠B+∠D=∠E.(1)将点E移至图2的位置时,则∠B、∠D,∠E有什么 2020-06-12 …
探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D= 2020-07-09 …
如图1,若AB∥CD,则有∠B+∠D=∠E.1.将点E移至图2的位置时,∠D,∠B,∠E有什么关系 2020-07-20 …
设全集I={a,b,c,d,e,f,g},集合A={a,b,c},B={b,d,e},C={e,f 2020-07-30 …
求解多元一次不等式的编程47a-b-c-d-e-f-g>047b-a-c-d-e-f-g>023c- 2020-12-14 …
数据结构将下列各算术运算式表示成波兰式和逆波兰式:(A*(B+C)+D)*E-F*GA*(B-D)+ 2020-12-15 …