早教吧作业答案频道 -->数学-->
如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.(1) 求证:PB∥平面EFG(2) 求异面直线EG与BD所成角的余弦值;(3) 在线段CD上是否存在一点Q,使
题目详情
如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1) 求证:PB∥平面EFG
(2) 求异面直线EG与BD所成角的余弦值;
(3) 在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为4/5?若存在,求出CQ的值;若不存在,请说明理由.

E画的有点像B.
(1) 求证:PB∥平面EFG
(2) 求异面直线EG与BD所成角的余弦值;
(3) 在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为4/5?若存在,求出CQ的值;若不存在,请说明理由.

E画的有点像B.
▼优质解答
答案和解析
取AB为中点H,连结GH,HE,
∵E、F、G分别是线段PA、PD、CD的中点,
∴GH∥AD∥EF.
∴E,F,G,H四点共面.
又H为AB中点,∴EH∥PB.
又EH∈面EFG,PB∉平面EFG,
∴PB∥面EFG.
(2)取BC的中点M,连结GM、AM、EM,则GM∥BD,
∴∠EGM(或其补角)就是异面直线EG与BD所成的角.
在Rt△MAE中,EM=根号下的(EA^2+AM^2)=根号6
同理EG=6,又GM=1/2BD=根号2
∴在Rt△MGE中,cos∠EGM,EG^2+GM^2-ME^2)/(2*EG*GM)
=根号3/6,故异面直线EG与BD所成角的余弦值为根号3/6
假设在线段CD上存在一点Q,满足题设条件,过点Q作OR⊥AB于点R,连结RE,则QR∥AD.
∵四边形ABCD是正方形,△PAD是直角三角形,且PA=AD=2,
∴AD⊥AB,AD⊥PA.又AB∩PA=A,
∴AD⊥平面PAB.
又∵E,F分别是PA,PD的中点,
∴EF∥AD.∴EF⊥平面PAB.
又EF面EFQ,∴EFQ⊥平面PAB.
过A作AT⊥ER于点T,则AT⊥面EFQ,
∴AT就是点A到平面EFQ的距离.
设CQ=x(0≤x≤2),则BR=CQ=x,AR=2-x,AE=1,
在Rt△EAR中,AT=(AR*AE)/RE=(2-X)*1/(根号下的(2-x)^2+1^2)=4/5
解得x=2/3故存在点Q,当CQ=2/3时,点A到平面EFQ的距离为4/5
∵E、F、G分别是线段PA、PD、CD的中点,
∴GH∥AD∥EF.
∴E,F,G,H四点共面.
又H为AB中点,∴EH∥PB.
又EH∈面EFG,PB∉平面EFG,
∴PB∥面EFG.
(2)取BC的中点M,连结GM、AM、EM,则GM∥BD,
∴∠EGM(或其补角)就是异面直线EG与BD所成的角.
在Rt△MAE中,EM=根号下的(EA^2+AM^2)=根号6
同理EG=6,又GM=1/2BD=根号2
∴在Rt△MGE中,cos∠EGM,EG^2+GM^2-ME^2)/(2*EG*GM)
=根号3/6,故异面直线EG与BD所成角的余弦值为根号3/6
假设在线段CD上存在一点Q,满足题设条件,过点Q作OR⊥AB于点R,连结RE,则QR∥AD.
∵四边形ABCD是正方形,△PAD是直角三角形,且PA=AD=2,
∴AD⊥AB,AD⊥PA.又AB∩PA=A,
∴AD⊥平面PAB.
又∵E,F分别是PA,PD的中点,
∴EF∥AD.∴EF⊥平面PAB.
又EF面EFQ,∴EFQ⊥平面PAB.
过A作AT⊥ER于点T,则AT⊥面EFQ,
∴AT就是点A到平面EFQ的距离.
设CQ=x(0≤x≤2),则BR=CQ=x,AR=2-x,AE=1,
在Rt△EAR中,AT=(AR*AE)/RE=(2-X)*1/(根号下的(2-x)^2+1^2)=4/5
解得x=2/3故存在点Q,当CQ=2/3时,点A到平面EFQ的距离为4/5
看了 如图,平面PAD⊥平面ABC...的网友还看了以下:
如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直AB于点E,BF垂直AG于点F,当点G 2020-05-17 …
如图在正方形ABCD中点E在边AB上再点E作FG垂直于DEFG与边BC相交于点F与边DA的延长线相 2020-06-12 …
如图,在△ABC中,∠BAC的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE 2020-06-23 …
四边形ABCD是正方形,G为BC上任意一点(点G与B,C不重合),AE⊥DG于E,CF∥AE交DG 2020-06-27 …
立体几何截面立方体abcd-a'b'c'd',ab上有一点e,cc'上有一点f,a'd'上有一点g 2020-07-20 …
如图,BP平分角ABC,交CO于点F,DP平分角ADC交于点E,AB与CD相交于点G如果角A等于4 2020-07-24 …
如图,将直角三角形ABC沿着斜边AC的方向平移到△DEF的位置(A、D、C、F四点在同一条直线上) 2020-07-24 …
谢谢,谢谢,谢谢,已知:在三角形ABC中,AC=BC,角ACB=90度,过点C作CD垂直AB于点D 2020-07-29 …
初二数学,半小时内做出来加分在正方形ABCD中,点E在AB上,点E不与A,B重合,过点E作FG垂直于 2020-11-21 …
如图,在正方形ABCD中,G是BC上的任意一点(G与B,C两点不重合),E,F是AG上的两点(E,F 2021-01-11 …