早教吧作业答案频道 -->数学-->
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED.呃,一道数学题……四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED,求证:BF∥平面AEC的充要条件是点F为棱PC
题目详情
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED.呃,一道数学题……
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED,求证:BF∥平面AEC的充要条件是点F为棱PC的中点.
就是这样,我已经挠了脑袋一个晚上了……还没挠出来.
四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED,求证:BF∥平面AEC的充要条件是点F为棱PC的中点.
就是这样,我已经挠了脑袋一个晚上了……还没挠出来.
▼优质解答
答案和解析
我来帮你一下,
1,已知F是PC中点,取PE中点M,连结MF,连结AC和BD交于O,连结OE,BM,
MF是△PEC中位线,MF//CE,
四边形ABCD是平行四边形,则对角线互平分,O是BD中点,PE=2DE,PM=EM=DE,
OE是△DBM中位线,
OE//BM,
BM∩MF=M,
OE∩CE=E,
∴平面MFB//平面CEO(平面AEC),
BF∈平面MFB,
∴BF//平面AEC.
2、已知BF//平面AEC,
与前相同,取PE中点M,OE是△DMB中位线,OE//MB,
OE∈平面AEC,
故BM//平面AEC,
MB∩BF=B,
故平面BMF//平面AEC,
MF∈平面BMF,
故MF//平面AEC,
平面PDC∩平面AEC=EC,
故MF//CE,
在△PEC中.M是PE中点,MF//CE,故MF是△PEC中位线,
∴F是PC中点.
1,已知F是PC中点,取PE中点M,连结MF,连结AC和BD交于O,连结OE,BM,
MF是△PEC中位线,MF//CE,
四边形ABCD是平行四边形,则对角线互平分,O是BD中点,PE=2DE,PM=EM=DE,
OE是△DBM中位线,
OE//BM,
BM∩MF=M,
OE∩CE=E,
∴平面MFB//平面CEO(平面AEC),
BF∈平面MFB,
∴BF//平面AEC.
2、已知BF//平面AEC,
与前相同,取PE中点M,OE是△DMB中位线,OE//MB,
OE∈平面AEC,
故BM//平面AEC,
MB∩BF=B,
故平面BMF//平面AEC,
MF∈平面BMF,
故MF//平面AEC,
平面PDC∩平面AEC=EC,
故MF//CE,
在△PEC中.M是PE中点,MF//CE,故MF是△PEC中位线,
∴F是PC中点.
看了 四棱锥P-ABCD的底面是平...的网友还看了以下:
空间几何正三棱锥A-BCD中,点E在棱AB上,点F在棱CD上,并使AE:EB=CF:FD=p,p是 2020-04-24 …
已知三棱锥A-BCD,平面α满足条件到A,B,C.D的距离相等,记满足平面α的个数为p平面α将三棱 2020-06-04 …
在三棱柱ABC--A'B'C'中,点P,Q分别在棱BB',CC'上,且BP=2PB',CQ=3QC 2020-06-06 …
已知点o在二面角a-AB-b的棱上,点p在a内,且角POB=45度,若对于b内异于O的任意一点Q, 2020-06-21 …
已知正方体ABCD-A'B'C'D'棱长为a,P是棱AB上的一点,求点P与截面A'B'C'D'的距 2020-06-21 …
一个正三棱锥P-ABC一个下三棱锥P-ABC的底面边第为a,高为h,一个内接直三棱柱A1B1C1- 2020-07-09 …
已知直三棱柱底面各边的比为17:10:9,侧棱长为16cm,全面积为1440cm2,求底面各边之长 2020-07-31 …
某平行六面体各棱长均为4,在由顶点P出发的三条棱上分别截取PA=1,PB=2,PC=3,则三棱锥P 2020-08-03 …
(2014•咸阳三模)已知在长方体ABCD-A′B′C′D′中,点E为棱上CC′上任意一点,AB=B 2020-11-13 …
如图所示为“双棱镜干涉”实验装置,其中S为单色光源,A为一个顶角略小于180°的等腰三角形棱镜,P为 2020-11-16 …