早教吧 育儿知识 作业答案 考试题库 百科 知识分享

试讨论△ABC的重心,垂心,外心,内心"四心"中,若有其中"二心"互相重合,△ABC是否是等边三角形?

题目详情
试讨论△ABC的重心,垂心,外心,内心"四心"中,若有其中"二心"互相重合,△ABC是否是等边三角形?
▼优质解答
答案和解析

 
是,如图,延长AP交BC于D(前四种),理由如下:
①若P是重心,则BD=CD,
若P是垂心,则AD⊥BC
∴AD垂直平分BC,∴AB=AC,
同理BA=BC,∴△ABC是等边三角形
 
②,若P是重心,则BD=CD,
若P是外心,则PB=PC,
PD垂直平分BC,又∵点A在PD上∴AB=AC,
同理BA=BC,∴△ABC是等边三角形
 
 
③若P是重心, 则CD=BD,
若P是内心,则∠CAD=∠BAD,
延长AD至E,使DE=AD,
则由△ACD≌△EBD得AC=BE,∠CAD=∠E,
∴∠E=∠BAD,∴AB=BE=AC,
同理BA=BC,∴△ABC是等边三角形
 
④若P是垂心,则∠ADB=∠ADC=90°,
若P是内心,则∠BAD=∠CAD,
又∵AD=AD,∴△ABD≌△ACD,
∴AB=AC
同理BA=BC,∴△ABC是等边三角形
 
⑤若P是垂心,则AP⊥BC,
若P是外心,则P在BC的中垂线上,
由垂线的唯一性得AP即BC的中垂线,
∴AB=AC,
同理BA=BC,∴△ABC是等边三角形
 
⑥取三边中点D、G、F,分别连结PA、PB、PC、PD、PF、PG,
若P是内心,则∠GAP=∠FAP,
若P是外心,则PF⊥AC,PG⊥AB,即∠AFP=∠AGP=90°,
又∵AP=AP,∴△AFP≌△AGP,
又∵△AFP≌△CFP,
∴图中6个小△全等,以P为顶点的内角=60°,
∴以A、B、C为顶点的内角=30°,
∴∠BAC=∠ABC=∠ACB=60°,
∴△ABC是等边三角形
看了 试讨论△ABC的重心,垂心,...的网友还看了以下:

阅读下面的文字,完成下列各题。诗歌起源的探讨同艺术起源的探讨一样,曾困扰着一代又一代的学者。时至今  2020-05-13 …

试讨论△ABC的重心,垂心,外心,内心"四心"中,若有其中"二心"互相重合,△ABC是否是等边三角  2020-05-16 …

阅读下面的文字,完成问题诗歌起源的探讨同艺术起源的探讨一样,曾困扰着一代又一代的学者。时至今日,用  2020-06-17 …

关于特征值的二重根含义和应用问题设矩阵A=[12-3]的特征方程有一个二重根,求a的值,并讨论是否  2020-07-30 …

关于特征值的二重根含义和如何应用的问题设矩阵A=[12-3]的特征方程有一个二重根,求a的值,并讨  2020-07-30 …

计算二重积分,(1)计算二重积分∫∫xydσ,其中D是由两条抛物线y=x½,y=x²所围成的闭区间  2020-08-01 …

《庄重的乞讨》阅读庄重的乞讨庄重,是人的尊严的一部分,你见过乞讨者的庄重吗?那天,我乘20路电车,看  2020-12-02 …

庄严的乞讨短文求助庄重的乞讨庄重,是人的尊严的一部分,你见过乞讨者的庄重吗?那天,我乘20路电车,看  2020-12-17 …

庄重的乞讨阅读答案庄重的乞讨庄重,是人的尊严的一部分,你见过乞讨者的庄重吗?那天,我乘20路电车,看  2021-01-12 …

(二)庄重的乞讨庄重,是人的尊严的一部分,你见过乞讨者的庄重吗?那天,我乘20路电车,看见一位双目失  2021-01-12 …