早教吧作业答案频道 -->数学-->
已知向量a=(cos3/2x,sin3/2x),b=(cosx/2,-sinx/2),且x∈[0,π/2],求(1)a·b及a·b的模;(2)若f(x)=a·b-2λ|a+b|的最小值是-3/2,求实数λ的值.题里面的a,b均为向量
题目详情
已知向量a=(cos3/2x,sin3/2x),b=(cosx/2,-sinx/2),且x∈[0,π/2],求
(1)a·b及a·b的模;(2)若f(x)=a·b-2λ|a+b|的最小值是-3/2,求实数λ的值.题里面的a,b均为向量
(1)a·b及a·b的模;(2)若f(x)=a·b-2λ|a+b|的最小值是-3/2,求实数λ的值.题里面的a,b均为向量
▼优质解答
答案和解析
1)a·b (等于a的坐标乘b的坐标相加.)
=cos3/2x·cosx/2 - sin3/2x·sinx/2 =cos2x
a+b的模(等于a的坐标加b的坐标得到(a+b)的坐标, 然后x和y分别平方相加再整个开根号)
= 根号下(cos3/2x+cosx/2)平方 + (sin3/2x-sinx/2)平方
=根号下2cos2x+2
=2cosx
(2)
f(x)=a·b-2λ|a+b| = cos2x - 2λ·2cosx =2(cosx)的平方-4λcosx-1
看成一个抛物线函数~ 开口向上
最小值 -3/2
对称轴= -b/2a = -(-4λ)/2x2 =λ. 即cos=λ 时F(x)有最小值-3/2
代回抛物线函数F(x),
2λ平方-4λ平方-1= -3/2
λ=正负1/2
=cos3/2x·cosx/2 - sin3/2x·sinx/2 =cos2x
a+b的模(等于a的坐标加b的坐标得到(a+b)的坐标, 然后x和y分别平方相加再整个开根号)
= 根号下(cos3/2x+cosx/2)平方 + (sin3/2x-sinx/2)平方
=根号下2cos2x+2
=2cosx
(2)
f(x)=a·b-2λ|a+b| = cos2x - 2λ·2cosx =2(cosx)的平方-4λcosx-1
看成一个抛物线函数~ 开口向上
最小值 -3/2
对称轴= -b/2a = -(-4λ)/2x2 =λ. 即cos=λ 时F(x)有最小值-3/2
代回抛物线函数F(x),
2λ平方-4λ平方-1= -3/2
λ=正负1/2
看了 已知向量a=(cos3/2x...的网友还看了以下:
已知向量a=(2,1),b=(x,y).(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向 2020-03-30 …
已知向量a=(1,根号3),向量b=(cos2x,sin2x),函数f(x)=向量a*向量b1.求 2020-04-11 …
已知A,B,C,D四点共面且任三点不共线,面外空间一点P满足,向量AP=x向量PB+2向量PC-2 2020-05-13 …
已知向量a=〔2,cosx〕,向量b=〔sin〔x+π/6〕,–2〕,函数f〔x〕=向量a×向量b 2020-05-13 …
三角函数与向量结合(急)已知:向量a=[cos(3x/2),sin(3x/2)],向量b=[cos 2020-05-16 …
已知向量a=(x,y)与向量v=(x+2y,tanx/2·tany)的对应关系已知向量u=(x,y 2020-05-19 …
已知向量a=(-2,1)向量b=(x,1)若向量a与向量b的夹角为钝角已知向量a=(-2,-1)向 2020-06-03 …
已知a向量=(1,2),b向量=(3,-4),c向量=a向量+(x-3)b向量,d向量=-ya向量 2020-06-06 …
[(p+q)^3]^5除以[(p+q)^7]^2=,()^n=4^na^2nb^3n{-[-(-1) 2020-11-01 …
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),且x属于[0. 2020-11-02 …