早教吧作业答案频道 -->数学-->
【概率】怎样证明独立/互斥事件比如抽球 红26 蓝26 在不放回的情况下 第一次抽到红球的概率为A 第二次抽到红球的概率为B A和B是互斥事件 怎样证明?究竟是P(A∩B)=P(A)P(B)可证独立 还是 独立
题目详情
【概率】怎样证明独立/互斥事件
比如抽球 红26 蓝26 在不放回的情况下 第一次抽到红球的概率为A 第二次抽到红球的概率为B A和B是互斥事件 怎样证明?
究竟是P(A∩B)=P(A)P(B)可证独立 还是 独立可证P(A∩B)=P(A)P(B)?
具体证法呢?
还有一个问题 如果是通过P(B|A)=P(B)来证明独立,那么P(B|A)=P(A∩B)/P(A),在不知道A、B是不是独立事件的情况下 不能用P(A∩B)=P(A)P(B) 那不是进入了一个无限循环的证明之中了么!T T
比如抽球 红26 蓝26 在不放回的情况下 第一次抽到红球的概率为A 第二次抽到红球的概率为B A和B是互斥事件 怎样证明?
究竟是P(A∩B)=P(A)P(B)可证独立 还是 独立可证P(A∩B)=P(A)P(B)?
具体证法呢?
还有一个问题 如果是通过P(B|A)=P(B)来证明独立,那么P(B|A)=P(A∩B)/P(A),在不知道A、B是不是独立事件的情况下 不能用P(A∩B)=P(A)P(B) 那不是进入了一个无限循环的证明之中了么!T T
▼优质解答
答案和解析
你给出的抽球的例子不太合适,A,B都代表的是概率,而不是事件,所以谈不上互斥或者独立.
独立事件是指若A1,A2,A3,……An这些事件相互独立,则其中任何一个发生与否,都与其它事件的发生与否没有任何关系,互不影响.
互斥事件是指若A1,A2,A3,……An这些事件互斥,则其中任何一个发生了,其它的事件都不会发生.
证明独立性,就是用你说的P(A∩B)=P(A)P(B)式子来证,即如果P(A∩B)=P(A)P(B)成立,那么A与B相互独立;如果P(A∩B)=P(A)P(B)不成立,则A与B不相互独立.反过来,如果A与B相互独立,则P(A∩B)=P(A)P(B)成立,反之亦然.所以式子P(A∩B)=P(A)P(B)的成立是A与B相互独立充要条件.具体证法就是分别算出
P(A∩B)和P(A)P(B),看他们是否相等.
对于你补充的那个无限循环的证明是不会发生的,因为P(B|A)=P(B)与P(A∩B)=P(A)P(B)是等价的,而P(B|A)=P(A∩B)/P(A)与他们不同,所以在不知道A、B是不是独立事件的情况下,只能用P(B|A)=P(A∩B)/P(A),另外的两个都不能用.如果知道了A、B互为独立事件,则三个都能用.
如果是通过P(B|A)=P(B)来证明独立,那么与通过P(A∩B)=P(A)P(B)来证明是一样的,就看题中给什么样的条件了,在选择用哪一个比较方便.
独立事件是指若A1,A2,A3,……An这些事件相互独立,则其中任何一个发生与否,都与其它事件的发生与否没有任何关系,互不影响.
互斥事件是指若A1,A2,A3,……An这些事件互斥,则其中任何一个发生了,其它的事件都不会发生.
证明独立性,就是用你说的P(A∩B)=P(A)P(B)式子来证,即如果P(A∩B)=P(A)P(B)成立,那么A与B相互独立;如果P(A∩B)=P(A)P(B)不成立,则A与B不相互独立.反过来,如果A与B相互独立,则P(A∩B)=P(A)P(B)成立,反之亦然.所以式子P(A∩B)=P(A)P(B)的成立是A与B相互独立充要条件.具体证法就是分别算出
P(A∩B)和P(A)P(B),看他们是否相等.
对于你补充的那个无限循环的证明是不会发生的,因为P(B|A)=P(B)与P(A∩B)=P(A)P(B)是等价的,而P(B|A)=P(A∩B)/P(A)与他们不同,所以在不知道A、B是不是独立事件的情况下,只能用P(B|A)=P(A∩B)/P(A),另外的两个都不能用.如果知道了A、B互为独立事件,则三个都能用.
如果是通过P(B|A)=P(B)来证明独立,那么与通过P(A∩B)=P(A)P(B)来证明是一样的,就看题中给什么样的条件了,在选择用哪一个比较方便.
看了 【概率】怎样证明独立/互斥事...的网友还看了以下:
已知:7天卖了10台冰箱,问中位数多少条件1,每天至少卖1台条件2,每天最多卖两台A:单独由条件( 2020-06-07 …
一篮桃子8个人分余2,9个人分少2,问有多少个桃子别人问的题,还不能用方程算,感觉条件有问题.可以 2020-06-14 …
一制衣厂计划做一件上衣用布2.1米,改进工艺后每件可节约0.2米,原来做5700件的布,现在做多少 2020-06-16 …
2、下列说法正确的是()A、随机事件每次发生的机会都是50%B、不太可能发生的事件是不可能事件C、很 2020-11-03 …
事件与基本事件空间(1)不可能事件:在条件S下,的事件,叫做相对于事件S的不可能事件,简称不可能事件 2020-11-03 …
基本事件(1)定义:试验结果是,且每个事件都是的事件,称为基本事件.(2)特点:①任何两个基本事件是 2020-11-03 …
从6件不同的物品中任取1件、2件、3件、4件、5件、6件,一共有多少种取法?这道题按理说应该用组合的 2020-11-05 …
如何判断1个值是否满足3个条件?-技术问答如题条件1条件2条件3同时满足条件1,2,3都有可能不存在 2020-11-21 …
一、1.在WindowsXP文件名命名规则,哪种讲法是正确的()A、文件主名部分最多不超过8个字符B 2020-12-02 …
关于充要与必要条件的题目a是b的必要条件,b是d的充要条件,由d不可以推出c,但c可以推出d,c可以 2021-01-13 …