早教吧作业答案频道 -->数学-->
07.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴. (1)求抛物线的解析式和对称轴; (2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
题目详情
07.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴. (1)求抛物线
的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为 时,求直线AN的解析式.
的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为 时,求直线AN的解析式.
▼优质解答
答案和解析
(1)
过A,B,抛物线可表达为 y = a(x + 1)(x - 3)
过C:3 = -3a,a = -1
y = -(x + 1)(x - 3) = -x² + 2x + 3
对称轴:x = (-1 + 3)/2 = 1
(2)
P(1,p)
AC² = PC² + AP²
1 +9 = 1 + (p - 3)² + 4 + p²
p² - 3p + 2 = 0
p = 1,P(1,1)
或
p = 2,P(1,2)
(3)
AC的中垂线与l的交点即是(可能还有其他解)
AC的中点D(-1/2,3/2),斜率3
中垂线斜率 -1/3,解析式:y - 3/2 = (-1/3)(x + 1/2)
取x = 1,y = 1
M(1,1)
(4)
缺数据
可假设AN斜率k,解析式 y = k(x + 1)
与抛物线联立可得N的坐标
然后求AN的长及C与AN的距离
也可以用:
△OAC的面积 + 梯形OCNQ的面积 - △OCQ的面积 (Q为N向的垂线的垂足)
过A,B,抛物线可表达为 y = a(x + 1)(x - 3)
过C:3 = -3a,a = -1
y = -(x + 1)(x - 3) = -x² + 2x + 3
对称轴:x = (-1 + 3)/2 = 1
(2)
P(1,p)
AC² = PC² + AP²
1 +9 = 1 + (p - 3)² + 4 + p²
p² - 3p + 2 = 0
p = 1,P(1,1)
或
p = 2,P(1,2)
(3)
AC的中垂线与l的交点即是(可能还有其他解)
AC的中点D(-1/2,3/2),斜率3
中垂线斜率 -1/3,解析式:y - 3/2 = (-1/3)(x + 1/2)
取x = 1,y = 1
M(1,1)
(4)
缺数据
可假设AN斜率k,解析式 y = k(x + 1)
与抛物线联立可得N的坐标
然后求AN的长及C与AN的距离
也可以用:
△OAC的面积 + 梯形OCNQ的面积 - △OCQ的面积 (Q为N向的垂线的垂足)
看了 07.已知抛物线y=ax2+...的网友还看了以下:
已知函数f(x)=x+根号2/x的定义域为(0,+),设点P是函数f(x)图象上的任意一点已知函数 2020-05-12 …
已知反比例函数y=kx与直线y=1/4x相交于A.B两点.第一象限上M(m,n)已知双曲线y=k/ 2020-05-13 …
已知P是抛物线y=2倍(x-2)的平方的对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x 2020-05-16 …
如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如 2020-05-16 …
如图:已知抛物线与X轴交于A、B两点,与Y轴正半轴交于C点,直线X=1是抛物线的对称轴,如图:已知 2020-06-03 …
(1/2)已知函数f(x)=ax^2+1(a>0),g(x)=x^3+bx.若曲线f(x)与曲线g 2020-06-27 …
已知双曲线y=k/x与直线y=1/4x相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是 2020-07-26 …
已知抛物线的顶点在原点,准线方程为x=1/4,该抛物线与过点(-1,0)的直线交于A,B.已知抛物 2020-07-31 …
已知抛物线C的顶点在原点准线为X=-1(1)求抛物线C的方程?(2)设直线X=-1与X轴交于M点, 2020-07-31 …
已知点F是双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点P为右支上一点直线P 2021-01-11 …