早教吧作业答案频道 -->数学-->
07.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴. (1)求抛物线的解析式和对称轴; (2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
题目详情
07.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴. (1)求抛物线
的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为 时,求直线AN的解析式.
的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为 时,求直线AN的解析式.
▼优质解答
答案和解析
(1)
过A,B,抛物线可表达为 y = a(x + 1)(x - 3)
过C:3 = -3a,a = -1
y = -(x + 1)(x - 3) = -x² + 2x + 3
对称轴:x = (-1 + 3)/2 = 1
(2)
P(1,p)
AC² = PC² + AP²
1 +9 = 1 + (p - 3)² + 4 + p²
p² - 3p + 2 = 0
p = 1,P(1,1)
或
p = 2,P(1,2)
(3)
AC的中垂线与l的交点即是(可能还有其他解)
AC的中点D(-1/2,3/2),斜率3
中垂线斜率 -1/3,解析式:y - 3/2 = (-1/3)(x + 1/2)
取x = 1,y = 1
M(1,1)
(4)
缺数据
可假设AN斜率k,解析式 y = k(x + 1)
与抛物线联立可得N的坐标
然后求AN的长及C与AN的距离
也可以用:
△OAC的面积 + 梯形OCNQ的面积 - △OCQ的面积 (Q为N向的垂线的垂足)
过A,B,抛物线可表达为 y = a(x + 1)(x - 3)
过C:3 = -3a,a = -1
y = -(x + 1)(x - 3) = -x² + 2x + 3
对称轴:x = (-1 + 3)/2 = 1
(2)
P(1,p)
AC² = PC² + AP²
1 +9 = 1 + (p - 3)² + 4 + p²
p² - 3p + 2 = 0
p = 1,P(1,1)
或
p = 2,P(1,2)
(3)
AC的中垂线与l的交点即是(可能还有其他解)
AC的中点D(-1/2,3/2),斜率3
中垂线斜率 -1/3,解析式:y - 3/2 = (-1/3)(x + 1/2)
取x = 1,y = 1
M(1,1)
(4)
缺数据
可假设AN斜率k,解析式 y = k(x + 1)
与抛物线联立可得N的坐标
然后求AN的长及C与AN的距离
也可以用:
△OAC的面积 + 梯形OCNQ的面积 - △OCQ的面积 (Q为N向的垂线的垂足)
看了 07.已知抛物线y=ax2+...的网友还看了以下:
(1)点A(-2,1)关于x轴的对称点为A′();(2)点B(0,-3)关于x轴的对称点为B′() 2020-05-02 …
已知抛物线y=ax²+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,3),对 2020-05-15 …
已知抛物线y=x^2-4x+3与x轴交于点AB(A左B右)与y轴交于C点P是抛物线对称轴上一点,且 2020-05-16 …
函数y=(x-2)与x轴交于点A与y轴交于点B对称轴上是否存在一点p使P、A、O、B为顶点的四边形 2020-05-16 …
抛物线y=ax^2+k(a>0)开口方向,对称轴,顶点坐标y=a(x-h)^2+k(a>O)开口方 2020-06-14 …
已知点A(a,-2)与点B(3,b)关于x轴对称,且点C(a,b)与点D(x,y)关于原点对称,求 2020-07-30 …
导数基本公式的证明,推导如何推导Sin的导数是Cos,指数函数,对数函数的推导在详细点y=a^x到 2020-08-01 …
在直角坐标系中,已知点A(3,2),作点A关于y轴的对称点为A1,作点A1关于原点的对称点为A2, 2020-08-01 …
请问y=a^x(a的x次方)和y=a^1/x(a的1/x次方)的图象是关于什么对称?A.x轴对称B. 2020-11-11 …
在直角坐标系中,已知点A(3,2).作点A关于y轴的对称点为A1,作点A1关于原点的对称点为A2,作 2021-02-14 …