早教吧作业答案频道 -->数学-->
如图,已知抛物线y=-4/9x²+bx+c与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长(3)探究:在抛物线的对称轴上是否存在
题目详情
如图,已知抛物线y=-4/9x²+bx+c与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1
(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长
(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.

(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长
(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.

▼优质解答
答案和解析
(1)解析:∵抛物线y=-4/9x^2+bx+c,其对称轴为x=2
y=-4/9x^2+bx+c=-4/9(x-9b/8)^2+9b^2/16+c
∴9b/8=2==>b=16/9
y=-4/9x^2+16/9x+c
∵OA=1==>A(-1,0)==>AD=1+2=3
-4/9-16/9+c=0==>c=20/9
B(5,0)
(2)解析:∵y=-4/9x^2+16/9x+20/9=-4/9(x-2)^2+4
∴顶点C(2,4)==>BC中点(3.5,2)
BC斜率为-4/3
∴BC中垂线EF方程为:y-2=3/4(x-3.5)==>6x-8y-5=0
∴F(5/6,0)
|FC|=√[(2-5/6)^2+4^2]=25/6
(3)解析:在抛物线对称轴上肯定存在点P,即∠CBD平分线与中垂线交点P
Tan∠CBD=4/3
Tan∠CBD =2Tan(∠CBD/2)/[1-(Tan(∠CBD/2))^2]=4/3
解得Tan(∠CBD/2)=1/2
PD/BD=1/2==>PD=3/2
∴P(2,3/2)
y=-4/9x^2+bx+c=-4/9(x-9b/8)^2+9b^2/16+c
∴9b/8=2==>b=16/9
y=-4/9x^2+16/9x+c
∵OA=1==>A(-1,0)==>AD=1+2=3
-4/9-16/9+c=0==>c=20/9
B(5,0)
(2)解析:∵y=-4/9x^2+16/9x+20/9=-4/9(x-2)^2+4
∴顶点C(2,4)==>BC中点(3.5,2)
BC斜率为-4/3
∴BC中垂线EF方程为:y-2=3/4(x-3.5)==>6x-8y-5=0
∴F(5/6,0)
|FC|=√[(2-5/6)^2+4^2]=25/6
(3)解析:在抛物线对称轴上肯定存在点P,即∠CBD平分线与中垂线交点P
Tan∠CBD=4/3
Tan∠CBD =2Tan(∠CBD/2)/[1-(Tan(∠CBD/2))^2]=4/3
解得Tan(∠CBD/2)=1/2
PD/BD=1/2==>PD=3/2
∴P(2,3/2)
看了 如图,已知抛物线y=-4/9...的网友还看了以下:
如图,抛物线y=ax²+bx+c交x轴于A、B两点,交y轴于点c,对称轴为直线x=1,已知:A(- 2020-05-15 …
抛物线y=ax^2+bx+c交x轴于A、B两点,与y轴交于点C,已知抛物线的对称轴为x=1,B(3 2020-05-15 …
已知抛物线y=ax2+bx+c与x轴交于ab两点,与y轴交于点c,是否存在实数a使△ABC为直角三 2020-05-16 …
如图,抛物线y=-x2+2x+3的顶点为C,交x轴于A、B两点,交Y轴于点D(1)求A、C、D三个 2020-05-16 …
声誉风险通常与信用、市场、操作等风险( )。A.相互排斥、互不共存B.相互独立、互不影响C.交叉存在 2020-05-30 …
如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线 2020-06-29 …
已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方(1)求 2020-07-08 …
如图,已知直线y=-12x+2与x轴、y轴分别相交于A、B两点,过A、B两点的抛物线y=ax2+bx 2020-10-31 …
抛物线y=ax²+bx+c交X轴于A,B两点,交y轴于点C,对称轴为直线x=1.且A、C两点的坐标分 2020-11-28 …
已知二次函数y=ax²+bx+c(a>0)经过点M(-1,2)和点N(1,-2),交x轴于A、B两点 2020-12-08 …