早教吧作业答案频道 -->数学-->
抛物线C1:y=a(x+1)(x-3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,-3)(1)求抛物线C1的解析式及A,B点坐标;(2)求抛物线C1的顶点坐标;(3)将抛物线C1向上平移
题目详情
抛物线C1:y=a(x+1)(x-3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,-3)

(1)求抛物线C1的解析式及A,B点坐标;
(2)求抛物线C1的顶点坐标;
(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2,若抛物线C2的顶点在△ABC内,求n的取值范围.
(在所给坐标系中画出草图C1)

(1)求抛物线C1的解析式及A,B点坐标;
(2)求抛物线C1的顶点坐标;
(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2,若抛物线C2的顶点在△ABC内,求n的取值范围.
(在所给坐标系中画出草图C1)
▼优质解答
答案和解析
(1)∵抛物线C1:y=a(x+1)(x-3a)y轴交于点C(0,-3),
∴-3=a(0+1)(0-3a),
解得a=1(舍去负值).
∴抛物线C1的解析式为:y=(x+1)(x-3).
∴A(-1,0),B(3,0);
(2)∵y=(x+1)(x-3)=(x-1)2-4,
∴该抛物线的解析式为y=(x-1)2-4,则该抛物线的顶点坐标为(1,-4).
(3)将(1)中求得的抛物线向上平移3个单位长度,
再向左平移n(n>0)个单位长度得到新抛物线y=(x-1+n)2-1,
∴平移后抛物线的顶点坐标是(1-n,-1),
∴-
<1-n<2,
解得-1<n<
,
∵n>0,
∴0<n<
.
∴-3=a(0+1)(0-3a),
解得a=1(舍去负值).
∴抛物线C1的解析式为:y=(x+1)(x-3).
∴A(-1,0),B(3,0);
(2)∵y=(x+1)(x-3)=(x-1)2-4,

∴该抛物线的解析式为y=(x-1)2-4,则该抛物线的顶点坐标为(1,-4).
(3)将(1)中求得的抛物线向上平移3个单位长度,
再向左平移n(n>0)个单位长度得到新抛物线y=(x-1+n)2-1,
∴平移后抛物线的顶点坐标是(1-n,-1),
∴-
2 |
3 |
解得-1<n<
5 |
3 |
∵n>0,
∴0<n<
5 |
3 |
看了 抛物线C1:y=a(x+1)...的网友还看了以下:
如图,直线l1:y=x+3与x轴交与点A,与y轴交于点P,直线l2:y=-2x+m与x轴交于点B, 2020-04-26 …
已知抛物线y=ax^2-2x+c与它的对称轴相交与点A(1,-4),与y轴交于点C,与x轴正半轴交 2020-05-16 …
已知直线y=1/3x+2与y轴交于点A,与x轴交于点B,直线l经过点A,坐标原点为O点,把三角形A 2020-05-16 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
如图,⊙O1和⊙O2相交于点A,B.过点A作直线交⊙O1于点C,交⊙O2于点D,M是CD中点,直线 2020-06-03 …
根据下列语句画出图形1.直线l与直线m相交于点A,直线m与直线n相交于点C,直线你与直线l相交于点 2020-06-12 …
(2014•荔城区二模)如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为 2020-07-26 …
如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1, 2020-07-29 …
如何,直线y=2x十3与x轴相交于点A,与y轴交于点p.(1)求A,B两点的坐标过B点作直线B如何, 2020-11-04 …
(2014?潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A 2020-11-13 …