早教吧作业答案频道 -->其他-->
若椭圆的焦点在x轴上,过点(2,1)作圆x2+y2=4的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是.
题目详情
若椭圆
的焦点在x轴上,过点(2,1)作圆x2+y2=4的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.

▼优质解答
答案和解析

设切点坐标为(m,n)则
=-1即m2+n2-n-2m=0
∵m2+n2=4
∴2m+n-4=0
即AB的直线方程为2x+y-4=0
∵线AB恰好经过椭圆的右焦点和上顶点
∴2c-4=0;b-4=0
解得c=2,b=4
所以a2=b2+c2=20
故椭圆方程为
故答案为:
.

设切点坐标为(m,n)则

∵m2+n2=4
∴2m+n-4=0
即AB的直线方程为2x+y-4=0
∵线AB恰好经过椭圆的右焦点和上顶点
∴2c-4=0;b-4=0
解得c=2,b=4
所以a2=b2+c2=20
故椭圆方程为

故答案为:

看了 若椭圆的焦点在x轴上,过点(...的网友还看了以下:
已知双曲线x2a2-y2b2=1(a>0,b>0)的右顶点为A,右焦点为F,右准线与轴交于点B,且 2020-04-08 …
已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F,A为短轴的一个端点,且|OA|=|OF| 2020-06-21 …
1.一个正方形内接于椭圆,并有两边垂直于椭圆长轴且分别经过它的焦点,则椭圆的离心率为多少?2.已知 2020-06-30 …
设双曲线的左右焦点为F1,F2,P为双曲线上一点,求证:若PT平分△PF1F2在点P处的内角,则焦 2020-07-04 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F,A为短轴的一个端点,且|OA|=|OF| 2020-07-30 …
已知椭圆C:(a>b>0)的一个焦点到长轴的两个端点的距离分别为和.(1)求椭圆的方程;(2)若过 2020-07-30 …
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点分别为F1(-根号2,0),F2(号 2020-07-31 …
已知抛物线E的顶点在原点,焦点F在y轴正半轴上,抛物线上一点P(m,4)到其准线的距离为5,过点F 2020-07-31 …
求,高智商的来帮忙求啊,解析几何怎么也不会.如图,已知F1F2是椭圆C,x^2/a^2+y^2/b^ 2020-12-19 …