设函数f(x)=lnx+x+a,若曲线y=e-12sinx+e+12上存在点(x0,y0)使得f(f(y0))=y0成立,则实数a的取值范围为()A.[0,e2-e+1]B.[0,e2+e-1]C.[0,e2-e-1]D.[0,e2+e+1]
设函数f(x)=
,若曲线y=lnx+x+a
sinx+e-1 2
上存在点(x0,y0)使得f(f(y0))=y0成立,则实数a的取值范围为( )e+1 2
A. [0,e2-e+1]
B. [0,e2+e-1]
C. [0,e2-e-1]
D. [0,e2+e+1]
∴当sinx=1时,y=
| e-1 |
| 2 |
| e+1 |
| 2 |
| e-1 |
| 2 |
| e+1 |
| 2 |
当sinx=-1时,y=
| e-1 |
| 2 |
| e+1 |
| 2 |
| e-1 |
| 2 |
| e+1 |
| 2 |
即函数y=
| e-1 |
| 2 |
| e+1 |
| 2 |
若y=
| e-1 |
| 2 |
| e+1 |
| 2 |
则y0∈[-1,e].且f(y0)=y0.
若下面证明f(y0)=y0.
假设f(y0)=c>y0,则f(f(y0))=f(c)>f(y0)=c>y0,不满足f(f(y0))=y0.
同理假设f(y0)=c<y0,则不满足f(f(y0))=y0.
综上可得:f(y0)=y0.y0∈[-1,e].
∵函数f(x)=
| lnx+x+a |
∴等价为
| lnx+x+a |
即平方得lnx+x+a=x2,
则a=x2-lnx-x,
设h(x)=x2-lnx-x,则h′(x)=2x-1-
| 1 |
| x |
| 2x2-x-1 |
| x |
| (2x+1)(x-1) |
| x |
由h′(x)>0得1<x≤e,此时函数单调递增,
由h′(x)<0得0<x<1,此时函数单调递减,
即当x=1时,函数取得极小值,即h(1)=1-ln1-1=0,
当x=e时,h(e)=e2-lne-e=e2-e-1,
则0≤h(x)≤e2-e-1.
则0≤a≤e2-e-1.
故选:C.
已知点P在曲线y=4/(e^x+1)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是y=4/[ 2020-04-11 …
分式求和问题1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)为什么1/(2^k+1) 2020-04-26 …
S=(1+1/1*2+(2+1/2*3)+(3+1/3*4)+...+(20+1/20*21)S= 2020-04-27 …
ab=c^2怎么推出√(e^2-1)=e^2..(双曲线,e是离心率)RT我省略了系数,没想到出B 2020-05-15 …
limx->0(e^x+e^2+e^3)/3lim(x~0)((e^x+e^2x+e^3x)/3) 2020-05-17 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
E^2*R/(R+r)^2=E^2/(R-r)^2/R+4r(某公式推导最后两行)本人只得:=E^ 2020-06-07 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
已知a[1,0].b0,-1]c[-1,2].d[2,-1]e[4,2]五个点,抛物线y=a[x- 2020-07-09 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …