定义在R上的连续函数f(x)满足条件:(1)f(x)是奇函数;(2)f(1+x)=f(1-x);(3)f(x)在(0,1)上单调递增;(4)f(1)=1,则在x∈[-2k,2k]时(k为非零正整数),函数f(x)的图
定义在R上的连续函数f(x)满足条件:(1)f(x)是奇函数;(2)f(1+x)=f(1-x);(3)f(x)在(0,1)上单调递增;(4)f(1)=1,则在x∈[-2k,2k]时(k为非零正整数),函数f(x)的图象与x轴的交点的个数是( )
A. 2k-1
B. 2k
C. 2k+1
D. k+1
∴由f(1+x)=f(1-x)得f(1+x)=f(1-x)=-f(x-1),
即f(x+2)=-f(x),则f(x+4)=f(x),
即函数的周期是4,
在一个周期[-2,2]内,
∵f(1)=1,∴f(-1)=-f(1)=1,
∵f(0)=0,∴f(2)=-f(0)=0,则f(-2)=-f(2)=0,
则在每一个周期(-2,2]内有两个零点,则在[-2k,2k]共有2k+1个零点,
即),函数f(x)的图象与x轴的交点的个数是2k+1,
故选:C.
已知整数m满足4m3>0,4-3m>0,则关于x的一元二次方程x^2+2=x(mx-3)的解为?卧 2020-04-07 …
函数f(x)在(0,+∞)连续,f(1)=5/2,对所有x,t∈(0,+∞),满足∫(1,x)f( 2020-05-19 …
在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+b+3=0(1)直接写出:a 2020-06-14 …
求微分方程(y+1)^2(dy/dx)+x^3=0满足当x=0,y=0的特解解 2020-07-31 …
将下面各数按从小到大排列,并用小于号连接-0.25+2.3-0.15将下面各数按从小到大排列,并用 2020-08-01 …
判断下列各对直线是否垂直:(1)y=x,2x+2y-7=0(2)x+4y-5=0,4x-3y-5= 2020-08-01 …
ABC分别是(0,-1)(0,2)(3,0)下面四个点M(3,3)N(3-3)P(-3,0)Q(- 2020-08-03 …
求满足下列条件的平面方程:(1)过点p(1,1,1)且与平面3x-y+2z-1=0平行(3)与x轴、 2020-10-30 …
如图,在平面直角坐标系,△ABC的顶点A(-3,0),B(0.3),AD⊥BC于D交Y轴于点E(0, 2020-11-01 …
帮忙看一下为什么过0年,本利合会出现0?原题:某家庭为准备孩子上大学的经费,每年6月30日都到同一银 2020-11-14 …