早教吧作业答案频道 -->其他-->
在直角坐标系中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分别是AB、BD的中点,连接MN交CE于点K.(1)如图1,已知A点的坐标为(3,0),C点的坐标为(-4,2),求D点的坐标.(2)如图2,当C、B、D
题目详情
在直角坐标系中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分别是AB、BD的中点,连接MN交CE于点K.

(1)如图1,已知A点的坐标为(3,0),C点的坐标为(-4,2),求D点的坐标.
(2)如图2,当C、B、D共线,AB=2BC时,探究CK与EK之间的数量关系,并证明.
(3)如图3,当C、B、D不共线,AB≠BC时,(2)中的结论是否成立?若成立,请证明;若不成立,请说明理由.

(1)如图1,已知A点的坐标为(3,0),C点的坐标为(-4,2),求D点的坐标.
(2)如图2,当C、B、D共线,AB=2BC时,探究CK与EK之间的数量关系,并证明.
(3)如图3,当C、B、D不共线,AB≠BC时,(2)中的结论是否成立?若成立,请证明;若不成立,请说明理由.
▼优质解答
答案和解析
解(1)如图1,在Rt△BDE和Rt△ABC中,
∵
,
∴Rt△BDE≌Rt△ABC,
∴BD=AB,
∵C(-4,2),∠ABC=90°,
∴B(-4,0).
∵A(3,0),
∴AB=7,
∴BD=7
D(-4,-7);
(2)如图2,CK=EK
理由:连EM、CN,
∵AB=2BC,AB=BD,
∴BD=2BC,
∵M、N分别是AB、BD的中点,
∴AB=2BM,BD=2BN=2ND,
∴BC=BM=BN=DN,
∵DE=BC,
∴DE=DN.
∵∠ABC=∠BDE=90°,
∴∠DEN=∠DNE=∠BNM=∠BMN=45°,
∴∠MNE=180°-45°-45°=90°,
在△MBN和△NDE中,
,
∴△MBN≌△NDE(SAS),
∴MN=EN,
∴△MNE是等腰直角三角形,
∴∠NME=45°,
∴∠BME=90°,
∴四边形BDEM是矩形,
∴EM=DB,BD∥EM,
∴EM=NC.∠CEM=∠NCE,∠NME=∠MNC,
在△EMK和△CNK中,
,
∴△EMK≌△CNK,
∴CK=EK.
(3)如图3,MN交BE、AC于F、G,过E、C作MN的垂线,垂足为Q、P,连结CM、EN,
∴∠EQN=∠EQK=∠CPM=90°.
∵AB=BD,M、N是AB、BD的中点,
∴DN=BN=BM=AM,
∴∠2=∠BMN,
∵∠1=∠BMN,
∴∠2=∠1.
在△EDN和△CBM中
,
∴△EDN≌△CBM(SAS),
∴EN=CM.
在△BNE和△AMC中
,
∴△BNE≌△AMC(SSS),
∴∠7=∠8,∠ENB=∠CMA,
∴∠ENB-∠2=∠CMA-∠1,
即∠3=∠4.
在△EQN和△CPM中,
,
∴△EQN≌△CPM(AAS),
∴EQ=CP.
在△EQK和△CPK中,
,
∴△EQK≌△CPK(AAS),
∴EK=CK.
,
∵
|
∴Rt△BDE≌Rt△ABC,
∴BD=AB,
∵C(-4,2),∠ABC=90°,
∴B(-4,0).
∵A(3,0),
∴AB=7,
∴BD=7
D(-4,-7);
(2)如图2,CK=EK
理由:连EM、CN,
∵AB=2BC,AB=BD,
∴BD=2BC,
∵M、N分别是AB、BD的中点,
∴AB=2BM,BD=2BN=2ND,
∴BC=BM=BN=DN,
∵DE=BC,
∴DE=DN.
∵∠ABC=∠BDE=90°,
∴∠DEN=∠DNE=∠BNM=∠BMN=45°,
∴∠MNE=180°-45°-45°=90°,
在△MBN和△NDE中,
|
∴△MBN≌△NDE(SAS),
∴MN=EN,
∴△MNE是等腰直角三角形,
∴∠NME=45°,
∴∠BME=90°,
∴四边形BDEM是矩形,
∴EM=DB,BD∥EM,
∴EM=NC.∠CEM=∠NCE,∠NME=∠MNC,
在△EMK和△CNK中,
|
∴△EMK≌△CNK,
∴CK=EK.
(3)如图3,MN交BE、AC于F、G,过E、C作MN的垂线,垂足为Q、P,连结CM、EN,
∴∠EQN=∠EQK=∠CPM=90°.
∵AB=BD,M、N是AB、BD的中点,
∴DN=BN=BM=AM,
∴∠2=∠BMN,
∵∠1=∠BMN,
∴∠2=∠1.
在△EDN和△CBM中
|
∴△EDN≌△CBM(SAS),
∴EN=CM.
在△BNE和△AMC中
|
∴△BNE≌△AMC(SSS),
∴∠7=∠8,∠ENB=∠CMA,
∴∠ENB-∠2=∠CMA-∠1,
即∠3=∠4.
在△EQN和△CPM中,
|
∴△EQN≌△CPM(AAS),
∴EQ=CP.
在△EQK和△CPK中,
|
∴△EQK≌△CPK(AAS),
∴EK=CK.

看了在直角坐标系中,∠ABC=∠B...的网友还看了以下:
已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0)(0,3),现有两动点P, 2020-05-17 …
施工单位与中标分包商签订分包施工合同的同时,必须签订() 。A.用工合同B.安全施工免责声明C.保险 2020-05-29 …
在直角坐标系中,A、B两点的坐标分别是(-2,1)和(1,5),点P在x轴,且点P到A、B两点的4 2020-06-14 …
在平面直角坐标系中已知点A和B的坐标分别为A(-2,3),B.(2,1)(1)在y轴上找一点在平面 2020-06-14 …
甲乙两人独立的各向同一目标射击一次,其命中率分别为0.6和0.7'求目标被命中的概率.若已知甲乙两 2020-06-16 …
条件概率什么时候用19)(本小题满分12分)某人向一目射击4次,每次击中目标的概率为1/3.该目标 2020-06-16 …
某建设项目实行公开招标,经资格预审有5家单位参加投标,招标方拟采取综合评分法选择综合分值最高单位为 2020-06-21 …
一批同学参加飞标比赛,每人发三标.如图是标靶,标靶上的数字4和1表示射中该靶区的得分数,没射中标靶 2020-07-16 …
分标段/分包项目可否限定投标人参加的标段/标包数量?是否可以在招标文件中明确规定限制参加一个标段或标 2020-11-03 …
英语中音标的使用方法我现在英语没有基础,买的教学材料是从头开始教学的,现在刚开始学音标就遇到几个问题 2021-02-10 …