早教吧作业答案频道 -->数学-->
(2011•威海)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MN
题目详情
(2011•威海)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.

(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于
?若能,求出此时∠1的度数;若不能,试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.

(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于
| 1 |
| 2 |
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.
▼优质解答
答案和解析
(1)∵四边形ABCD是矩形,
∴AM∥DN.
∴∠KNM=∠1.
∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°,
∴∠MKN=40°.
(2)不能.
过M点作ME⊥DN,垂足为E,则ME=AD=1.
∵∠KNM=∠KMN,
∴MK=NK,
又∵MK≥ME,
∴NK≥1.
∴△MNK的面积=
NK•ME≥
.
∴△MNK的面积不可能小于
.

(3)分两种情况:
情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合.
MK=MB=x,则AM=5-x.
由勾股定理得12+(5-x)2=x2,
解得x=2.6.
∴MD=ND=2.6.
S△MNK=S△MND=
=1.3.
情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC.
MK=AK=CK=x,则DK=5-x.
同理可得MK=NK=2.6.
∵MD=1,
∴S△MNK=
=1.3.
△MNK的面积最大值为1.3.
∴AM∥DN.
∴∠KNM=∠1.
∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°,
∴∠MKN=40°.
(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.
∵∠KNM=∠KMN,
∴MK=NK,
又∵MK≥ME,
∴NK≥1.
∴△MNK的面积=
| 1 |
| 2 |
| 1 |
| 2 |
∴△MNK的面积不可能小于
| 1 |
| 2 |

(3)分两种情况:
情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合.
MK=MB=x,则AM=5-x.
由勾股定理得12+(5-x)2=x2,
解得x=2.6.
∴MD=ND=2.6.
S△MNK=S△MND=
| 1×2.6 |
| 2 |
情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC.

MK=AK=CK=x,则DK=5-x.
同理可得MK=NK=2.6.
∵MD=1,
∴S△MNK=
| 1×2.6 |
| 2 |
△MNK的面积最大值为1.3.
看了(2011•威海)如图,ABC...的网友还看了以下:
(1)2x^2+3x-1(2)x^3-8y^3-z^3-6xyz(3)x^3-9x+8(4)x^9 2020-05-17 …
7道有难度的分解因式题一、拆项、添项法:1、x^3-9x+82、x^9+x^6+x^3-33、(m 2020-06-13 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
已知Fibonacci数列定义如下:F(1)=1F(2)=1F(n)=f(n-1)+f(n-2)( 2020-07-23 …
已知Fibonacci数列定义如下:F(1)=1F(2)=1F(n)=f(n-1)+f(n-2)( 2020-07-23 …
数列一题设函数f(n)=n(n为自然数,奇数)=n/2(n为自然数,偶数)设数列an=f(1)+f 2020-07-30 …
求高次和差公式推导,重金酬谢x^n-y^n=(x-y)[x^(n-1)+x^(n-2)y+x^(n- 2020-10-31 …
(1)10^7除以(10^3除以10^2)(2)(x-y)^3*(x-y)^2*(y-x)(3)4* 2020-11-01 …
C++和式种类给定一个数N怎么求N有多少种不同(相同元素个数不同)的和式?和式中最小元素大于2比如N 2020-11-07 …
设f(x)=lim[(n-2)(x^2+x-2)]/[n(x^2+3x+2)+1]x→+∞thank 2020-11-27 …