早教吧作业答案频道 -->数学-->
y=cos(x+y)隐函数求二次导y"能用反函数做吗x+y=arccosy.再两边分别求导.这样对吗
题目详情
y=cos(x+y)隐函数求二次导y"能用反函数做吗
x+y=arccosy.再两边分别求导.这样对吗
x+y=arccosy.再两边分别求导.这样对吗
▼优质解答
答案和解析
y=cos(x+y)隐函数求二次导y"能用反函数做吗
求一阶导数时可以用反函数作,待一阶求出后再求二阶时就不能再用反函数来求.
我用两种方法求一阶,可看出结果是一致的.
用“隐函数求导法”:
F(x,y)=y-cos(x+y)=0
dy/dx=-(∂F/∂x)/(∂F/∂y)=sin(x+y)/[1+sin(x+y)]
用“反函数求导法”:
x+y=arccosy,故x=arccosy-y,
dx/dy=-1/√(1-y²) - 1=-1/√(1-cos²(x+y)-1=-1/sin(x+y)-1=-[1+sin(x+y)]/sin(x+y)
∴dy/dx=y′=1/(dx/dy)=-sin(x+y)/[1+sin(x+y)]
显然,两种方法,结果相同.
但求二阶时,已无反函数可用,因此不能再用“反函数求导法”.可直接对x求导,但要记住:
要把y看作中间变量,遇到y时要用复合函数求导法.
d²y/dx²=dy′/dx=-{[1+sin(x+y)][cos(x+y)](1+y′)-[sin(x+y)cos(x+y)](1+y′)}/[1+sin(x+y)]²
=-(1+y′){[1+sin(x+y)][cos(x+y)]-[sin(x+y)cos(x+y)]}/[1+sin(x+y)]²
=-(1+y′)cos(x+y)/[1+sin(x+y)]²
再将y′=-sin(x+y)/[1+sin(x+y)]代入,化简,即得:
y″=-cos(x+y)/[1+sin(x+y)]³.
求一阶导数时可以用反函数作,待一阶求出后再求二阶时就不能再用反函数来求.
我用两种方法求一阶,可看出结果是一致的.
用“隐函数求导法”:
F(x,y)=y-cos(x+y)=0
dy/dx=-(∂F/∂x)/(∂F/∂y)=sin(x+y)/[1+sin(x+y)]
用“反函数求导法”:
x+y=arccosy,故x=arccosy-y,
dx/dy=-1/√(1-y²) - 1=-1/√(1-cos²(x+y)-1=-1/sin(x+y)-1=-[1+sin(x+y)]/sin(x+y)
∴dy/dx=y′=1/(dx/dy)=-sin(x+y)/[1+sin(x+y)]
显然,两种方法,结果相同.
但求二阶时,已无反函数可用,因此不能再用“反函数求导法”.可直接对x求导,但要记住:
要把y看作中间变量,遇到y时要用复合函数求导法.
d²y/dx²=dy′/dx=-{[1+sin(x+y)][cos(x+y)](1+y′)-[sin(x+y)cos(x+y)](1+y′)}/[1+sin(x+y)]²
=-(1+y′){[1+sin(x+y)][cos(x+y)]-[sin(x+y)cos(x+y)]}/[1+sin(x+y)]²
=-(1+y′)cos(x+y)/[1+sin(x+y)]²
再将y′=-sin(x+y)/[1+sin(x+y)]代入,化简,即得:
y″=-cos(x+y)/[1+sin(x+y)]³.
看了y=cos(x+y)隐函数求二...的网友还看了以下:
1.一个两位数,十位上的数字比个位上的数字小3,设其个位数字为x.(1)试用含x的代数试表示这个两位 2020-03-30 …
两数的差是18,两数最小公倍数是两数最大公约数的12倍,求这两个数?如果把两数中较小的数设为X,则 2020-06-03 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
我们把形如y=f(x)^φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数,在函数解析式两 2020-08-01 …
我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边 2020-12-05 …
如果f(x)=x,则实数x称为函数f(x)的不动点已知函数f(x)=x^2+(2根号2+1)x+根号 2020-12-08 …
任给a,b两数,按规则c=a+b+b的平方-a的平方扩充一个新数c,称这样的新数c为“快乐数”又在a 2021-01-13 …