早教吧作业答案频道 -->数学-->
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)过点(1,3/2),F1,F2分别为椭圆C的两个焦点,离心率为1/2(1)求椭圆方程(2)A是椭圆左顶点,直线L过右焦点与椭圆交于M.N若AM.AN的斜率为K1K2,且K1+K2=-1/2求直线方程.第一
题目详情
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0) 过点(1,3/2),F1,F2分别为椭圆C的两个焦点,离心率为1/2
(1)求椭圆方程
(2)A是椭圆左顶点,直线L过右焦点与椭圆交于M.N 若AM.AN的斜率为K1 K2,且K1+K2=-1/2
求直线方程.
第一题我做好了 x^2/4+y^2/3=1
(1)求椭圆方程
(2)A是椭圆左顶点,直线L过右焦点与椭圆交于M.N 若AM.AN的斜率为K1 K2,且K1+K2=-1/2
求直线方程.
第一题我做好了 x^2/4+y^2/3=1
▼优质解答
答案和解析
解:
由已知得: e=c/a=1/2 -----(1)
由于右焦点(c,0)到直线bx+ay-ab=0的距离d=(√21)/7
则有:d=(√21)/7=|bc-ab|/[√(a^2+b^2)] -----(2)
又:a^2=b^2+c^2 ----(3)
联立(1)(2)(3)得:a^2=4,b^2=3
则椭圆C:x^2/4+y^2/3=1
设直线AB:y=kx+m,A(x1,y1),B(x2,y2)
[1]k存在时,联立AB与C得:
3x^2+4(kx+m)^2=12
(3+4k^2)x^2+8kmx+4m^2-12=0
则:x1+x2=-8km/(3+4k^2)
x1x2=(4m^2-12)/(3+4k^2)
且判别式:(8km)^2-4(3+4k^2)(4m^2-12)>0
由于:OA垂直OB
则:向量OA*向量OB=0
即:x1x2+y1y2=0
又:y1y2=(kx1+m)(kx2+m)
则:(1+k^2)x1x2+km(x1+x2)+m^2=0
代入化简得:m^2=(12/7)(k^2+1)
点O(0,0)到AB距离
d'=|m|/√[1+k^2]
由于:(d')^2=m^2/(1+k^2)=12/7
则:d'=(2√21)/7
[2]k不存在时,也可得到d'=2√21/7
故点O到直线AB的距离为定值(2√21)/7
|AB|
=[√(1+k^2)]*|x1-x2|
=[√(1+k^2)]*√[(x1+x2)^2-4x1x2]
=[√(1+k^2)]*√[(8km)^2/(3+4k^2)^2-4(4m^2-12)/(3+4k^2)]
=[√(1+k^2)]*√[(12k^2+9-3m^2)/(3+4k^2)^2]
=[√(1+k^2)]*√(48/7)*√[(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(1+k^2)(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(16k^4+25k^2+9)/(16k^4+24k^2+9]
=√(48/7)*√[1+ (k^2)/(16k^4+24k^2+9)]
=√(48/7)*√{1+ 1/[16k^2+24+(9/k^2)]}
由于:k^2>0
则由均值不等式得:16k^2+9/k^2>=2*√[(16k^2)*(9/k^2)]=24
故:1/[16k^2+24+(9/k^2)] >=1/(24+24)=1/48
则:|AB|>=√(48/7)*√[1+ 1/48]=√7
故AB长度的最小值为√7
由已知得: e=c/a=1/2 -----(1)
由于右焦点(c,0)到直线bx+ay-ab=0的距离d=(√21)/7
则有:d=(√21)/7=|bc-ab|/[√(a^2+b^2)] -----(2)
又:a^2=b^2+c^2 ----(3)
联立(1)(2)(3)得:a^2=4,b^2=3
则椭圆C:x^2/4+y^2/3=1
设直线AB:y=kx+m,A(x1,y1),B(x2,y2)
[1]k存在时,联立AB与C得:
3x^2+4(kx+m)^2=12
(3+4k^2)x^2+8kmx+4m^2-12=0
则:x1+x2=-8km/(3+4k^2)
x1x2=(4m^2-12)/(3+4k^2)
且判别式:(8km)^2-4(3+4k^2)(4m^2-12)>0
由于:OA垂直OB
则:向量OA*向量OB=0
即:x1x2+y1y2=0
又:y1y2=(kx1+m)(kx2+m)
则:(1+k^2)x1x2+km(x1+x2)+m^2=0
代入化简得:m^2=(12/7)(k^2+1)
点O(0,0)到AB距离
d'=|m|/√[1+k^2]
由于:(d')^2=m^2/(1+k^2)=12/7
则:d'=(2√21)/7
[2]k不存在时,也可得到d'=2√21/7
故点O到直线AB的距离为定值(2√21)/7
|AB|
=[√(1+k^2)]*|x1-x2|
=[√(1+k^2)]*√[(x1+x2)^2-4x1x2]
=[√(1+k^2)]*√[(8km)^2/(3+4k^2)^2-4(4m^2-12)/(3+4k^2)]
=[√(1+k^2)]*√[(12k^2+9-3m^2)/(3+4k^2)^2]
=[√(1+k^2)]*√(48/7)*√[(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(1+k^2)(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(16k^4+25k^2+9)/(16k^4+24k^2+9]
=√(48/7)*√[1+ (k^2)/(16k^4+24k^2+9)]
=√(48/7)*√{1+ 1/[16k^2+24+(9/k^2)]}
由于:k^2>0
则由均值不等式得:16k^2+9/k^2>=2*√[(16k^2)*(9/k^2)]=24
故:1/[16k^2+24+(9/k^2)] >=1/(24+24)=1/48
则:|AB|>=√(48/7)*√[1+ 1/48]=√7
故AB长度的最小值为√7
看了设椭圆C:x^2/a^2+y^...的网友还看了以下:
在线等,关于椭圆的.大大的给分,请详细过程!(只今天)已知椭圆x^2/a^2+y^2/b^2=1( 2020-05-15 …
如图,A,F分别是椭圆C:X^2\a^2+Y^2\b^2=1(a>b>0)的一个顶点和焦点,过点A 2020-05-16 …
(1/2)椭圆ax^2+bx^2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB 2020-05-16 …
若a加b分之a减b等于三,求代数式a加b分之2(a减b)减3(a减b)分之4(a加b)的值 请尽快 2020-05-16 …
已知椭圆(a>b>0),离心率为的椭圆经过点(,1).(1)求该椭圆的标准方程;(2)过椭圆的一个 2020-07-12 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=(根号6)/3,过点A(0,- 2020-07-30 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …
椭圆方程已知椭圆x^2/a^2+y^2/b^2=1(a>b>0,且b∈Z)的焦点为F(√5,0), 2020-07-31 …
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F,离心率是1/2,过F作直线l交椭 2020-08-01 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F(c,0),(c>b).过原 2021-01-11 …