早教吧作业答案频道 -->数学-->
在数列an中a1=1a(n+1)=2an+2^n设bn=an/(2^n-1).1.证明:数列bn是等差数列2.设数列an的前n项和为Sn求limSn/(n*2^(n+1))3.设cn=2bn-1数列cn的前n项和为Tndn=Tn/((4an)^2-Tn)是否存在实数t使得对任意正
题目详情
在数列an中a1=1 a(n+1)=2an+2^n设bn=an/(2^n-1).1.证明:数列bn是等差数列
2.设数列an的前n项和为Sn 求limSn/(n*2^(n+1))
3.设cn=2bn-1 数列cn的前n项和为Tn dn=Tn/((4an)^2-Tn)是否存在实数t使得对任意正整数n和实数m属于【1,2】都有d1+d2+……+dn≥log8(2m+t)成立
2.设数列an的前n项和为Sn 求limSn/(n*2^(n+1))
3.设cn=2bn-1 数列cn的前n项和为Tn dn=Tn/((4an)^2-Tn)是否存在实数t使得对任意正整数n和实数m属于【1,2】都有d1+d2+……+dn≥log8(2m+t)成立
▼优质解答
答案和解析
a(n+1)=2an+2^n
a(n+1)/2^(n+1)=2an/2^(n+1)+2^n/2^(n+1)
a(n+1)/2^(n+1)=an/2^n+1/2
a(n+1)/2^(n+1)-an/2^n=1/2
所以an/2^n 是以1/2为公差的等差数列
an/2^n=a1/2^1+1/2(n-1)
an/2^n=1/2+1/2(n-1)
an/2^n=n/2
an=2^n*n/2
an=n*2^(n-1)
sn=1*2^0+2*2^1+.+n*2^(n-1)
2sn=1*2^1+2*2^2+.+n*2^n
sn-2sn=2^0+2^1+2^2+.+2^(n-1)-n*2^n
-sn=(1-2^n)/(1-2)-n*2^n
sn=1-2^n+n*2^n
sn=(n-1)*2^n+1
limSn/[n*2^(n+1)]
=lim[(n-1)*2^n+1]/[n*2^(n+1)]
=1/2
bn=an/(2^n-1)
=n*2^(n-1)/2^(n-1)
=n
bn-b(n-1)=n-(n-1)=1
所以bn是以1为公差的等差数列
cn=2bn-1
=2n-1
Tn=1+3+.+2n-1
=(1+2n-1)*n/2
=n^2
dn=Tn/[(4an)^2-Tn]
=n^2/{4*[n*2^(n-1)]^2-n^2}
=n^2/{4*[n^2*2^(2n-2)-n^2}
=n^2/{n^2*2^2n-n^2}
=1/(2^2n-1)
=1/(4^n-1)
d1=1/(4^1-1)=1/3
[d1+d2+d3+.+dn+d(n+1)]-(d1+d2+d3+.+dn)=d(n+1)
=1/[4^(n+1)-1]>0
∴数列{d1+d2+d3+.+dn}单调递增,
即d1+d2+d3+.+dn>=d1=1/3
要使d1+d2+d3+.+dn>=log8 (2m+t)对任意正整数n成立,
必须且只需1/3>=log8 (2m+t)
即0<2m+t0,4+t
a(n+1)/2^(n+1)=2an/2^(n+1)+2^n/2^(n+1)
a(n+1)/2^(n+1)=an/2^n+1/2
a(n+1)/2^(n+1)-an/2^n=1/2
所以an/2^n 是以1/2为公差的等差数列
an/2^n=a1/2^1+1/2(n-1)
an/2^n=1/2+1/2(n-1)
an/2^n=n/2
an=2^n*n/2
an=n*2^(n-1)
sn=1*2^0+2*2^1+.+n*2^(n-1)
2sn=1*2^1+2*2^2+.+n*2^n
sn-2sn=2^0+2^1+2^2+.+2^(n-1)-n*2^n
-sn=(1-2^n)/(1-2)-n*2^n
sn=1-2^n+n*2^n
sn=(n-1)*2^n+1
limSn/[n*2^(n+1)]
=lim[(n-1)*2^n+1]/[n*2^(n+1)]
=1/2
bn=an/(2^n-1)
=n*2^(n-1)/2^(n-1)
=n
bn-b(n-1)=n-(n-1)=1
所以bn是以1为公差的等差数列
cn=2bn-1
=2n-1
Tn=1+3+.+2n-1
=(1+2n-1)*n/2
=n^2
dn=Tn/[(4an)^2-Tn]
=n^2/{4*[n*2^(n-1)]^2-n^2}
=n^2/{4*[n^2*2^(2n-2)-n^2}
=n^2/{n^2*2^2n-n^2}
=1/(2^2n-1)
=1/(4^n-1)
d1=1/(4^1-1)=1/3
[d1+d2+d3+.+dn+d(n+1)]-(d1+d2+d3+.+dn)=d(n+1)
=1/[4^(n+1)-1]>0
∴数列{d1+d2+d3+.+dn}单调递增,
即d1+d2+d3+.+dn>=d1=1/3
要使d1+d2+d3+.+dn>=log8 (2m+t)对任意正整数n成立,
必须且只需1/3>=log8 (2m+t)
即0<2m+t0,4+t
看了 在数列an中a1=1a(n+...的网友还看了以下:
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
哥德巴猜想 ,素数,函数 500分求一个 函数 f(x) 使得 对于 任何一个大于6的正整数 n 2020-05-14 …
已知数列an,bn中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-已知数 2020-05-15 …
级数(1/n)^2怎么求?答案我记得好像是π^2/6 2020-06-06 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
求幂级数1/n^2的和 2020-07-21 …
为什么级数∑1/(n^2-1)收敛 2020-07-31 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
1/((n^2-1)2^n)级数的和级数(n从2到无穷)1/((n^2-1)2^n)=0.5级数1/ 2020-11-18 …