早教吧作业答案频道 -->数学-->
在数列an中a1=1a(n+1)=2an+2^n设bn=an/(2^n-1).1.证明:数列bn是等差数列2.设数列an的前n项和为Sn求limSn/(n*2^(n+1))3.设cn=2bn-1数列cn的前n项和为Tndn=Tn/((4an)^2-Tn)是否存在实数t使得对任意正
题目详情
在数列an中a1=1 a(n+1)=2an+2^n设bn=an/(2^n-1).1.证明:数列bn是等差数列
2.设数列an的前n项和为Sn 求limSn/(n*2^(n+1))
3.设cn=2bn-1 数列cn的前n项和为Tn dn=Tn/((4an)^2-Tn)是否存在实数t使得对任意正整数n和实数m属于【1,2】都有d1+d2+……+dn≥log8(2m+t)成立
2.设数列an的前n项和为Sn 求limSn/(n*2^(n+1))
3.设cn=2bn-1 数列cn的前n项和为Tn dn=Tn/((4an)^2-Tn)是否存在实数t使得对任意正整数n和实数m属于【1,2】都有d1+d2+……+dn≥log8(2m+t)成立
▼优质解答
答案和解析
a(n+1)=2an+2^n
a(n+1)/2^(n+1)=2an/2^(n+1)+2^n/2^(n+1)
a(n+1)/2^(n+1)=an/2^n+1/2
a(n+1)/2^(n+1)-an/2^n=1/2
所以an/2^n 是以1/2为公差的等差数列
an/2^n=a1/2^1+1/2(n-1)
an/2^n=1/2+1/2(n-1)
an/2^n=n/2
an=2^n*n/2
an=n*2^(n-1)
sn=1*2^0+2*2^1+.+n*2^(n-1)
2sn=1*2^1+2*2^2+.+n*2^n
sn-2sn=2^0+2^1+2^2+.+2^(n-1)-n*2^n
-sn=(1-2^n)/(1-2)-n*2^n
sn=1-2^n+n*2^n
sn=(n-1)*2^n+1
limSn/[n*2^(n+1)]
=lim[(n-1)*2^n+1]/[n*2^(n+1)]
=1/2
bn=an/(2^n-1)
=n*2^(n-1)/2^(n-1)
=n
bn-b(n-1)=n-(n-1)=1
所以bn是以1为公差的等差数列
cn=2bn-1
=2n-1
Tn=1+3+.+2n-1
=(1+2n-1)*n/2
=n^2
dn=Tn/[(4an)^2-Tn]
=n^2/{4*[n*2^(n-1)]^2-n^2}
=n^2/{4*[n^2*2^(2n-2)-n^2}
=n^2/{n^2*2^2n-n^2}
=1/(2^2n-1)
=1/(4^n-1)
d1=1/(4^1-1)=1/3
[d1+d2+d3+.+dn+d(n+1)]-(d1+d2+d3+.+dn)=d(n+1)
=1/[4^(n+1)-1]>0
∴数列{d1+d2+d3+.+dn}单调递增,
即d1+d2+d3+.+dn>=d1=1/3
要使d1+d2+d3+.+dn>=log8 (2m+t)对任意正整数n成立,
必须且只需1/3>=log8 (2m+t)
即0<2m+t0,4+t
a(n+1)/2^(n+1)=2an/2^(n+1)+2^n/2^(n+1)
a(n+1)/2^(n+1)=an/2^n+1/2
a(n+1)/2^(n+1)-an/2^n=1/2
所以an/2^n 是以1/2为公差的等差数列
an/2^n=a1/2^1+1/2(n-1)
an/2^n=1/2+1/2(n-1)
an/2^n=n/2
an=2^n*n/2
an=n*2^(n-1)
sn=1*2^0+2*2^1+.+n*2^(n-1)
2sn=1*2^1+2*2^2+.+n*2^n
sn-2sn=2^0+2^1+2^2+.+2^(n-1)-n*2^n
-sn=(1-2^n)/(1-2)-n*2^n
sn=1-2^n+n*2^n
sn=(n-1)*2^n+1
limSn/[n*2^(n+1)]
=lim[(n-1)*2^n+1]/[n*2^(n+1)]
=1/2
bn=an/(2^n-1)
=n*2^(n-1)/2^(n-1)
=n
bn-b(n-1)=n-(n-1)=1
所以bn是以1为公差的等差数列
cn=2bn-1
=2n-1
Tn=1+3+.+2n-1
=(1+2n-1)*n/2
=n^2
dn=Tn/[(4an)^2-Tn]
=n^2/{4*[n*2^(n-1)]^2-n^2}
=n^2/{4*[n^2*2^(2n-2)-n^2}
=n^2/{n^2*2^2n-n^2}
=1/(2^2n-1)
=1/(4^n-1)
d1=1/(4^1-1)=1/3
[d1+d2+d3+.+dn+d(n+1)]-(d1+d2+d3+.+dn)=d(n+1)
=1/[4^(n+1)-1]>0
∴数列{d1+d2+d3+.+dn}单调递增,
即d1+d2+d3+.+dn>=d1=1/3
要使d1+d2+d3+.+dn>=log8 (2m+t)对任意正整数n成立,
必须且只需1/3>=log8 (2m+t)
即0<2m+t0,4+t
看了 在数列an中a1=1a(n+...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数 2020-05-16 …
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数 2020-05-16 …
组合公式用组合的方法证明:对任意正整数n,C(r,r)+C(r+1,r)+…+C(n,r)=C(n 2020-05-23 …
信用评分模型的数据基础是:( )。 A.历史数据 B.当前数据 C.对未来数据的预期 D.以上 2020-05-30 …
数列{an}和{bn}的前n项和分别记为An和Bn,已知an=-n-3/2,4Bn-12An=13 2020-06-06 …
函数数列已知点(1,1/3)是函数f(x)=a^x(a>0,且a不等于1)的图像上的一点,等比数列 2020-07-21 …
各项都为正数的等比数列{an},前n项和为A,前n项的积为B,前n项的倒数为C求证:各项都为正数的 2020-07-30 …
关于数列的已知等比数列{an}的前n项和An=(1/3)^n-c(c为常数),数列{bn}(bn> 2020-07-30 …
二项式系数c(0,n).c(1,n).c…c(n,n)中存在连续的三项成等差数列,公差为正的前四组 2020-08-03 …