早教吧作业答案频道 -->数学-->
已知点P的双曲线(a>0,b>0)右支上一点,F1、F2分别为双曲线的左、右焦点,I为△PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为()A.B.C.D.
题目详情


A.

B.

C.

D.

▼优质解答
答案和解析
设△PF1F2的内切圆半径为r,由|PF1|-|PF2|=2a,|F1F2|=2c,用△PF1F2的边长和r表示出等式中的
三角形的面积,解此等式求出λ.
【解析】
设△PF1F2的内切圆半径为r,由双曲线的定义得|PF1|-|PF2|=2a,|F1F2|=2c,
S△IPF1 =
|PF1|•r,S△IPF2=
|PF2|•r,S△I F1F2=
•2c•r=cr,
由题意得;
|PF1|•r=
|PF2|•r+λcr,故 λ=
=
=
,
故选 B.
三角形的面积,解此等式求出λ.
【解析】
设△PF1F2的内切圆半径为r,由双曲线的定义得|PF1|-|PF2|=2a,|F1F2|=2c,
S△IPF1 =



由题意得;





故选 B.
看了已知点P的双曲线(a>0,b>...的网友还看了以下:
一轮复习二次函数题目函数F(x)=ax^2+(b+1)x+b-2(a不等于0)若存在实数P使F(P) 2020-03-30 …
计算题(P/A,10%,4)=3.1699(P/F,10%,1)=0.9091(P/A,10%,5 2020-04-07 …
f(x)=px-q/x-2lnx,f(x)=qe-p/e-2,(e为自然对数的底数)(1)求p与q 2020-05-16 …
已知P:关于关于x的不等式x^3+x-m>0对任意x∈[1,2]恒成立:q:f(x)=x^2(x〉 2020-06-03 …
设函数f(x)=x2+px+q(p,q∈R).(Ⅰ)若p=2,当x∈[-4,-2]时,f(x)≥0 2020-06-27 …
条件概率问题P(E|F)=P(EF)/P(F)这个是如何从最原始的公式推导出来的?另外P(EF)我 2020-07-09 …
设g(x)=px-q/x-2f(x),其中f(x)=lnx,且g(e)=qe-p/e-2.(e为自 2020-08-02 …
财务管理中的计算题P2=30+40×(P/F,10%,1)+40×(P/F,10%,2)P2=30+ 2020-11-21 …
已知文法G:(1)E→E+T|T(2)T→T*F|F(3)F→P↑F|P(4)P→(E)|i1.已知 2020-12-07 …
高中函数已知f(x)=2^(x+1)是定义在R上的函数1.若f(x)可以表示为一个偶函数g(x)和奇 2020-12-22 …