早教吧 育儿知识 作业答案 考试题库 百科 知识分享

点P是双曲线x2a2-y2b2=1(a>0,b>0)的右支上一点,其左,右焦点分别为F1,F2,直线PF1与以原点O为圆心,a为半径的圆相切于A点,线段PF1的垂直平分线恰好过点F2,则离心率的值为()A.32

题目详情

点P是双曲线

x2
a2
-
y2
b2
=1(a>0,b>0)的右支上一点,其左,右焦点分别为F1,F2,直线PF1与以原点O为圆心,a为半径的圆相切于A点,线段PF1的垂直平分线恰好过点F2,则离心率的值为(  )

A.

3
2

B.

4
3

C.

5
3

D.

5
4

▼优质解答
答案和解析
由线段PF1的垂直平分线恰好过点F2
可得|PF2|=|F1F2|=2c,
由直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,作业帮
可得|OA|=a,
设PF1的中点为M,由中位线定理可得|MF2|=2a,
在直角三角形PMF2中,可得|PM|=
4c2-4a2
=2b,
即有|PF1|=4b,
由双曲线的定义可得|PF1|-|PF2|=2a,
即4b-2c=2a,即2b=a+c,
即有4b2=(a+c)2
即4(c2-a2)=(a+c)2
可得a=
3
5
c,
所以e=
c
a
=
5
3

故选:C.