早教吧作业答案频道 -->数学-->
已知F是双曲线x^2/4-y^2/12=1的左焦点,A(0,3),P是双曲线右支上的动点,则|PF|+|PA|的最小值是?..已知F是双曲线x^2/4-y^2/12=1的左焦点,A(0,3),P是双曲线右支上的动点,则|PF|+|PA|的最小值是?
题目详情
已知F是双曲线x^2/4-y^2/12=1的左焦点,A(0,3),P是双曲线右支上的动点,则|PF|+|PA|的最小值是?..
已知F是双曲线x^2/4-y^2/12=1的左焦点,A(0,3),P是双曲线右支上的动点,则|PF|+|PA|的最小值是?
已知F是双曲线x^2/4-y^2/12=1的左焦点,A(0,3),P是双曲线右支上的动点,则|PF|+|PA|的最小值是?
▼优质解答
答案和解析
右焦点为F2,
则:PF-PF2=2a=4
所以,PF=4+PF2
所以,PF+PA=4+PF2+PA
只要是PF2+PA最小即可,显然PF2+PA≧AF2
则PF+PA的最小值=4+AF2
AF2=5,所以,最小值为9
则:PF-PF2=2a=4
所以,PF=4+PF2
所以,PF+PA=4+PF2+PA
只要是PF2+PA最小即可,显然PF2+PA≧AF2
则PF+PA的最小值=4+AF2
AF2=5,所以,最小值为9
看了已知F是双曲线x^2/4-y^...的网友还看了以下:
已知双曲线x^2-y^2/3=1,若一椭圆与该双曲线共焦点,且有一交点P(2,3)已知双曲线x^2 2020-04-08 …
已知双曲线x2a2−y2b2=1的左,右焦点分别为F1,F2,左准线为l,若双曲线的左支上存在一点 2020-04-08 …
知道双曲线上一点到左准线的距离怎样求它到右准线的距离具体题目是双曲线x^2/64-y^2=1上一点 2020-05-12 …
已知圆C:x^2+y^2=4,将其作伸缩变换X'=2Xy'=y得到曲线P,若点R(1,0),点Q是 2020-05-12 …
关于圆锥曲线的问题若椭圆的中心为原点,焦点在x轴上,点P是椭圆上的一点,P在x轴上的射影恰为椭圆的 2020-06-04 …
如图,Rt△ACB中,∠ACB=如三°,∠ABC的角平分线BE和∠BAC的外角平分线A左相交于点P 2020-08-03 …
点P为抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线 2020-12-01 …
设p为双曲线x2-y2/24=1右支上一点F1,F2是该双曲线的左,右焦点求救设p为双曲线x2-y2 2020-12-31 …
y=x(X的平方)-4x+3与坐标轴交与A,B,C三点,点P为抛物线上一点,PE垂直于BC与E点,且 2021-01-11 …
已知F1,F2为双曲线,x^2-my^2=1m>0左右焦点,p为双曲线的左支任意一点已知F1,F2为 2021-01-23 …