早教吧作业答案频道 -->数学-->
在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点,若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α(0°<α<360°)(Ⅰ)如图①,
题目详情
在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点,若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α(0°<α<360°)
(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;
(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直线AE′与直线BF′相交于点P,在旋转过程中当点P在坐标轴上时,分别表示出此时点E′、D′、F′的坐标(直接写出结果即可).

(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;
(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直线AE′与直线BF′相交于点P,在旋转过程中当点P在坐标轴上时,分别表示出此时点E′、D′、F′的坐标(直接写出结果即可).

▼优质解答
答案和解析
(1)当α=90°时,点E′与点F重合,如图①.
∵点A(-2,0)点B(0,2),
∴OA=OB=2,
∵点E,点F分别为OA,OB的中点,
∴OE=OF=1,
∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,
∴OE′=OE=1,OF′=OF=1.
在Rt△AE′O中,
AE′=
=
.
在Rt△BOF′中,
BF′=
=
.
∴AE′,BF′的长都等于
;
(2)当α=135°时,如图②.
∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,
∴∠AOE′=∠BOF′=135°.
在△AOE′和△BOF′中,
,
∴△AOE′≌△BOF′(SAS).
∴AE′=BF′,且∠OAE′=∠OBF′.
∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,
∴∠CPB=∠AOC=90°,
∴AE′⊥BF′;
(3)点E′(1,0)、D′(1,-1)、F′(0,-1)
如图③,直线AE′与直线BF′相交于点P,当点P在坐标轴上时,α=180°,P与O重合,
∵OE′=OF′=1,
∴点E′(1,0)、D′(1,-1)、F′(0,-1).
∵点A(-2,0)点B(0,2),
∴OA=OB=2,
∵点E,点F分别为OA,OB的中点,

∴OE=OF=1,
∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,
∴OE′=OE=1,OF′=OF=1.
在Rt△AE′O中,
AE′=
OA2+OE2 |
5 |
在Rt△BOF′中,
BF′=
OB2+OF2 |
5 |
∴AE′,BF′的长都等于
5 |
(2)当α=135°时,如图②.
∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,
∴∠AOE′=∠BOF′=135°.

在△AOE′和△BOF′中,
|
∴△AOE′≌△BOF′(SAS).
∴AE′=BF′,且∠OAE′=∠OBF′.
∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,
∴∠CPB=∠AOC=90°,
∴AE′⊥BF′;
(3)点E′(1,0)、D′(1,-1)、F′(0,-1)
如图③,直线AE′与直线BF′相交于点P,当点P在坐标轴上时,α=180°,P与O重合,
∵OE′=OF′=1,
∴点E′(1,0)、D′(1,-1)、F′(0,-1).
看了在平面直角坐标系中,O为原点,...的网友还看了以下:
等边三角形ABC在平面直角坐标系中,点B,A分别在X轴的正负半轴上,点O恰好在AB的中点上,点C在 2020-05-16 …
已知,如图抛物线的顶点为原点,且与一次函数y=x+b的图像交于A,B两点,其中点B的坐标为(4,8 2020-05-16 …
已知二次函数y=ax2+bx+c的图像与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正已知 2020-05-16 …
在平面直角坐标系xOy中,已知AB是椭圆x2a2+y2b2=1(a>b>0)的不平行于对称轴的弦, 2020-06-12 …
如图,在直角坐标系中,一次函数y=2x+1的图象交y轴于点a,p是x轴正半轴上的动点,过p做x的垂 2020-06-14 …
设一次函数y=kx+b的图象经过点A(2,-1)设一次函数y=kx+b的图象经过点A(2,-1)和 2020-07-15 …
点A,B,P在同一直线上,下列说法正确的是()A.若AB=2PA,则P是AB的中点B.若AB=PB 2020-07-18 …
正比例函数y=kx(k不等于0)的图像与反比例函数y=-2/x的图像相交于A,B两点,其中点B的纵 2020-07-30 …
下列说法正确的是()A.若线段AB=BC,则点B是线段AC的中点B.若P是线段AB的中点,则AP= 2020-08-01 …
已知定点A(0,1),直线L1:y=-1交y轴于点B,记过点A且与直线L1相切的圆的圆心为点C.1) 2020-11-27 …