早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中A(3,0),B(0,1),点P为△OAB内任一点,连PO、PA、PB,将△ABP绕着点A顺时针旋转60°得到△AB′P′,连PP′.(1)求点B′的坐标;(2)当△OPA与△APB满足什么
题目详情
如图,在平面直角坐标系中A(
,0),B(0,1),点P为△OAB内任一点,连PO、PA、PB,将△ABP绕着点A顺时针旋转60°得到△AB′P′,连PP′.
(1)求点B′的坐标;
(2)当△OPA与△APB满足什么条件时,PO+PA+PB的值最小,并求出此最小值;
(3)试直接写出(2)中的点P坐标.

| 3 |
(1)求点B′的坐标;
(2)当△OPA与△APB满足什么条件时,PO+PA+PB的值最小,并求出此最小值;
(3)试直接写出(2)中的点P坐标.

▼优质解答
答案和解析
(1)∵A(
,0),B(0,1)
∴AB=2,∠BAO=30°
∵将△ABP绕着点A顺时针旋转60°得到△AB′P′
∴AB′=2,∠B′AO=90°
∴B′(
,2)
(2)由旋转可得,△APP′是等边三角形
∴PP′=PA
又∵P′B′=PB
∴PO+PA+PB=PO+PP′+P′B′
∴如图,当O、P、P′、B′四点共线时,PO+PA+PB的值最小
∴当∠OPA=∠APB=∠AP′B′=120°时,PO+PA+PB的值最小
此时,PO+PA+PB=OB′=
=
(3)如图,将(2)中的△OPB绕着点O逆时针旋转60°得到△OB″P″,则∠BOB″=60°,OB″=OB=1
∴点B的坐标为(-
,
)
由(2)可知A、P、P″、B″四点共线
∴点P为OB′与AB″的交点
根据A、B″两点的坐标可得直线AB″的解析式为y=-
x+
根据B′的坐标可得直线OB′的解析式为y=
x
联立方程组,解得P(
,
| 3 |
∴AB=2,∠BAO=30°
∵将△ABP绕着点A顺时针旋转60°得到△AB′P′
∴AB′=2,∠B′AO=90°
∴B′(
| 3 |
(2)由旋转可得,△APP′是等边三角形

∴PP′=PA
又∵P′B′=PB
∴PO+PA+PB=PO+PP′+P′B′
∴如图,当O、P、P′、B′四点共线时,PO+PA+PB的值最小
∴当∠OPA=∠APB=∠AP′B′=120°时,PO+PA+PB的值最小
此时,PO+PA+PB=OB′=
22+(
|
| 7 |
(3)如图,将(2)中的△OPB绕着点O逆时针旋转60°得到△OB″P″,则∠BOB″=60°,OB″=OB=1

∴点B的坐标为(-
| ||
| 2 |
| 1 |
| 2 |
由(2)可知A、P、P″、B″四点共线
∴点P为OB′与AB″的交点
根据A、B″两点的坐标可得直线AB″的解析式为y=-
| ||
| 9 |
| 1 |
| 3 |
根据B′的坐标可得直线OB′的解析式为y=
2
| ||
| 3 |
联立方程组,解得P(
| ||
| 7 |
看了如图,在平面直角坐标系中A(3...的网友还看了以下:
.平面直角坐标系中,平行四边形ABCD如图放置,点A、C的坐标分别为(3,0)(-1,0)平面直角 2020-05-16 …
在平面直角坐标系中,已知直线y=-3/4x+3与x轴,y轴分别交于A,B两点,点C(0,n)... 2020-05-16 …
将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D 2020-06-08 …
2、在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).¬(1)分别求出 2020-06-25 …
在坐标平面上,点P在x轴的负半轴,且到原点的距离是6,则点P的坐标是()A(0,6)B(0,-6) 2020-07-20 …
1.在空间直角坐标系中,过点P(2,1,1)且与直线{(大括号)x-yz1=0,3x-2y-2z1 2020-07-20 …
如图所示的直角坐标系xOy中,x<0,y>0的区域内有沿x轴正方向的匀强电场,x≥0的区域内有垂直 2020-07-31 …
(2013•晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m, 2020-08-02 …
在平面直角坐标系中,已知直线y=-3/4x+3与x轴,y轴分别交于A,B两点,点C(0,n)是y轴上 2020-11-03 …
(2013•绵阳模拟)如图所示的坐标系xOy中,x<0,y>0的区域内有沿x轴正方向的匀强电场,x≥ 2020-11-12 …