早教吧作业答案频道 -->其他-->
如图,四棱锥P-ABCD的底面ABCD为一直角梯形,侧面PAD是等边三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB,平面PAD⊥底面ABCD,E是PC的中点.(1)求证:BE∥平面PAD;(2)求证:BE⊥CD;(3)求BD与平面
题目详情

(1)求证:BE∥平面PAD;
(2)求证:BE⊥CD;
(3)求BD与平面PDC所成角的正弦值.
▼优质解答
答案和解析
(1)证明:如图,取CD的中点M,连接EM、BM,则四边形ABMD为矩形
∴EM∥PD,BM∥AD;
又∵BM∩EM=M,
∴平面EBM∥平面APD;
而BE⊂平面EBM,
∴BE∥平面PAD;
(2)证明:取PD的中点F,连接FE,则FE∥DC,BE∥AF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F为PD的中点,
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BE∥AF,
∴BE⊥平面PDC,
∴CD⊥BE;
(3)∵CD⊥AF,AF⊥PD,CD∩PD=D,
∴AF⊥平面PCD,
连接DE,则∠BDE为BD与平面PDC所成角.
在直角△BDE中,设AD=AB=a,则BE=AF=
a,BD=
a,∴sin∠BDE=
=
.

∴EM∥PD,BM∥AD;
又∵BM∩EM=M,
∴平面EBM∥平面APD;
而BE⊂平面EBM,
∴BE∥平面PAD;
(2)证明:取PD的中点F,连接FE,则FE∥DC,BE∥AF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F为PD的中点,
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BE∥AF,
∴BE⊥平面PDC,
∴CD⊥BE;
(3)∵CD⊥AF,AF⊥PD,CD∩PD=D,
∴AF⊥平面PCD,
连接DE,则∠BDE为BD与平面PDC所成角.
在直角△BDE中,设AD=AB=a,则BE=AF=
| ||
2 |
2 |
BE |
BD |
| ||
4 |
看了如图,四棱锥P-ABCD的底面...的网友还看了以下:
关于平均数1.什么叫算术平均数?什么叫几何平均数?2.利用它们的性质解题:(1)一个矩形的四边AB 2020-04-09 …
在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=1 2020-05-01 …
■在线等!高一数学,数列证明■已知a,b,c,d成等比数列(公比为q),求怔:(1)如果q≠-1, 2020-05-14 …
在有理数范围内,下列多项式能用公式法进行因式分解的是A.a的平方-6a B.a的平方-ab+b的平 2020-05-16 …
由a=b一定可以得出的等式是()A.a÷c=b÷c由a=b一定可以得出的等式是()A.a÷c=b÷ 2020-06-06 …
若a+b+c/d=a+b+d/c=a+c+d/b=a+c+d/a=k1)k=?2)a+b+c+d/ 2020-06-12 …
已知二面角A——l——B,直线a属于A,b属于B且a与l不垂直,b与l不垂直,那么()A,a与b可 2020-06-27 …
已知A(g)+B(g)⇌C(g)+D(g)反应的平衡常数和温度的关系如下:|温度/℃7009008 2020-07-05 …
在△ABC和△A'B'C'中,已知∠C=∠C'=90°,点D,D'分别在边AB,A'B'上,且CD 2020-07-30 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …