早教吧作业答案频道 -->其他-->
如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:CE=CF.(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
题目详情

(1)求证:CE=CF.
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°,
BC=DC,
∵BE=DF,
∴BC-BE=DC-DF,
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,又OM=OA,
∴四边形AEMF是平行四边形,
∵AE=AF,
∴平行四边形AEMF是菱形.
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
|
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°,
BC=DC,
∵BE=DF,
∴BC-BE=DC-DF,
即CE=CF,
在△COE和△COF中,
|
∴△COE≌△COF(SAS),
∴OE=OF,又OM=OA,
∴四边形AEMF是平行四边形,
∵AE=AF,
∴平行四边形AEMF是菱形.
看了如图,在正方形ABCD中,点E...的网友还看了以下:
已知向量M=(根号3sinX-cosX,1),N=(cosX,1/2),若f(X)=m*n,已知三 2020-05-16 …
河流是城市布局的重要区位因素.2.图中地点最不易发育成城市的是( )A.m B.f C.h D.g 2020-05-16 …
已知函数f(x)=2sinx/4cosx/4-2√3sin2x/4+√3(1)求函数f(x)的最小 2020-05-16 …
已知椭圆M:x2/a2+y2/3=1(a>0)的一个焦点为F(-1,0)已知椭圆M:x2/a2+y 2020-05-17 …
(2014•龙东地区)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m 2020-06-15 …
数学挑战题设f(x)=ax^2+bx+cf(x)在区间[-2,2]上的最大值最小值分别为M,m设f 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
一道函数证明题设f(x)=ax^2+bx+c是整系数二次三项式,m,n是整数,且f(m)与f(n) 2020-07-31 …
黄瓜植株的性别类型多样,研究发现两对独立遗传的基因F、f与M、m共同控制着黄瓜植株的性别,M基因控制 2020-10-29 …
黄瓜植株的性别类型多样,研究发现两对独立遗传的基因F、f与M、m控制着黄瓜植株的性别,M基因控制单性 2020-11-02 …