早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为.

题目详情
如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为______.
▼优质解答
答案和解析
∵四边形ABCD为矩形,且AD=10,
∴BQ=5,
当BP=PQ时,过P作PM⊥BQ,交BQ于点M,如图1,

则BM=MQ=2.5,且四边形ABMP为矩形,
∴AP=BM=2.5,
当BQ=BP时,则BP=5,在Rt△ABP中,AB=4,由勾股定理可求得AP=3,
当PQ=BQ时,以点Q为圆心,BQ为半径作圆,于AD交于R、S两点,如图2,

过Q作QN⊥RS,交RS于点N,则可知RN=SN,
在Rt△RNQ中,可求得RN=SN=3,
则AR=2,AS=8,
即R、S为满足条件的P点的位置,
∴AP=2或8,
综上可知AP为2或2.5或3或8,
故答案为:2或2.5或3或8.