早教吧作业答案频道 -->物理-->
帕努利定理的具体内容?请给公式,谢
题目详情
帕努利定理的具体内容?
请给公式,谢
请给公式,谢
▼优质解答
答案和解析
伯努利方程(Bernoulli equation)
理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程.因著名的瑞士科学家D.伯努利于1738年提出而得名.对于重力场中的不可压缩均质流体 ,方程为
p+ρgz+(1/2)*ρv^2=C
式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度.
上式各项分别表示单位体积流体的压力能 p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒.但各流线之间总能量(即上式中的常量值)可能不同.对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压 、动压和总压.显然 ,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压).飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小 ,因而合力向上.据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理.在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间.在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项.
理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程.因著名的瑞士科学家D.伯努利于1738年提出而得名.对于重力场中的不可压缩均质流体 ,方程为
p+ρgz+(1/2)*ρv^2=C
式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度.
上式各项分别表示单位体积流体的压力能 p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒.但各流线之间总能量(即上式中的常量值)可能不同.对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压 、动压和总压.显然 ,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压).飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小 ,因而合力向上.据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理.在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间.在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项.
看了帕努利定理的具体内容?请给公式...的网友还看了以下:
三角形外角平分线定理具体定理内容~ 2020-05-15 …
切线长定理内容 2020-05-17 …
毕达哥拉斯定理内容 2020-07-03 …
求解释射影定理中的射影与比例中项直角三角形射影定理,又称“欧几里德定理”,定理内容是:直角三角形中 2020-07-04 …
Bezout定理内容以及它的应用,请高手帮帮忙! 2020-07-26 …
双垂直定理内容 2020-07-29 …
有关圆的问题.除了“弦切角定理”“切线长定理”“相交弦定理”可以证明有关圆的问题外,还有哪些定理? 2020-07-31 …
什么叫勾股定理逆定理?内容就是“勾股定理”的相反嘛已知三角形三边满足“两边的平方和等于另一边的平方 2020-08-01 …
问斜射影定理内容及应用斜射影定理请讲解 2020-08-02 …
求广义勾股定理和中线定理内容 2020-11-22 …