早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设定义在R上的函数f(x)=1|x−1|,x≠11,x=1.若关于x的方程f2(x)+bf(x)+c=0有3个不同的实数解x1,x2,x3,则x1+x2+x3=.

题目详情
设定义在R上的函数f(x)=
1
|x−1|
,x≠1
1,x=1.
若关于x的方程f2(x)+bf(x)+c=0有3个不同的实数解x1,x2,x3,则x1+x2+x3=______.
▼优质解答
答案和解析
易知f(x)的图象关于直线x=1对称
对于方程f2(x)+bf(x)+c=0,是一个关于f(x)的一元二次方程,若此一元二次方程仅有一根,则必有
f(x)=1,此时x1,x2,x3三个数中有一个是1,另两个关于x=1对称,此时有 x1+x2+x3=3
若关于f(x)的一元二次方程f2(x)+bf(x)+c=0有两个根,则必有f(x)=1与f(x)=m≠1
此时f(x)=1的根为1,f(x)=m≠1有两根,且此两根关于x=1对称,此时有x1+x2+x3=3
综上知x1+x2+x3=3
故答案为3.