早教吧作业答案频道 -->数学-->
求一道极限题求n趋向无穷大时[(1+1/n^2)(1+2/n^2)…(1+n/n^2)]的极限
题目详情
求一道极限题
求n趋向无穷大时[(1+1/n^2)(1+2/n^2)…(1+n/n^2)]的极限
求n趋向无穷大时[(1+1/n^2)(1+2/n^2)…(1+n/n^2)]的极限
▼优质解答
答案和解析
二楼的结果是对的,但是做法是错的
这一步:
“由当x趋于0时ln(1+x)=x ” 他用的是等价无穷小的代换思想,
而等价无穷小不能用于加减形式 .他就错在这.
三楼的 “就是dontknow”的 想法完全正确,先赞一个.确实要用夹逼准则.
我就帮楼主总结一下吧:
先用二楼正确的前2部:
令y=[(1+1/n^2)(1+2/n^2)…(1+n/n^2)]
lny=ln(1+1/n^2)+ln(1+2/n^2)+……+ln(1+n/n^2) = M
开始3楼的夹逼准则:
ln(1 + i/n^2) ln(1+ i/n^2)> (i/n^2)/(1+ i/n^2) = i/(n^2 +i) > i/(n^2 +n)
也就是:
i/(n^2 +n)所以:
(1+2+...+n)/(n^2 +n)即:1/2 n趋近正无穷,夹逼得 lim M = 1/2
所以 结果就是 :
e^(1/2)
觉得这题不错,我做了张图片,楼主可以看看

这一步:
“由当x趋于0时ln(1+x)=x ” 他用的是等价无穷小的代换思想,
而等价无穷小不能用于加减形式 .他就错在这.
三楼的 “就是dontknow”的 想法完全正确,先赞一个.确实要用夹逼准则.
我就帮楼主总结一下吧:
先用二楼正确的前2部:
令y=[(1+1/n^2)(1+2/n^2)…(1+n/n^2)]
lny=ln(1+1/n^2)+ln(1+2/n^2)+……+ln(1+n/n^2) = M
开始3楼的夹逼准则:
ln(1 + i/n^2) ln(1+ i/n^2)> (i/n^2)/(1+ i/n^2) = i/(n^2 +i) > i/(n^2 +n)
也就是:
i/(n^2 +n)所以:
(1+2+...+n)/(n^2 +n)即:1/2 n趋近正无穷,夹逼得 lim M = 1/2
所以 结果就是 :
e^(1/2)
觉得这题不错,我做了张图片,楼主可以看看

看了求一道极限题求n趋向无穷大时[...的网友还看了以下:
已知向量a=(2,1),b=(x,y).(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向 2020-03-30 …
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有 2020-05-15 …
1+2+3+n=2分之1n(n+1),n是正整数,研究1*2+2*3+你(n+1),观察1*2=3 2020-05-20 …
49.7-[-23/3/4+(18.7-25.25)]12+1又3/4-8又5/12-6.75-( 2020-06-04 …
如果记y=x^2/(1+x^2)=f(x).则f(1)表示当x=1是y的值,即f(1)=1^2/( 2020-06-12 …
一元一次方程解答,一小时内,1.7(2x-1)-3(4x-1)=4(3x+2)-1;2.(5y+1 2020-07-19 …
(1)已知m=(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^ 2020-08-03 …
(2000•内江)(1)观察下列等式:1(1+1×2)(1+2×2)=12(11+1×2−11+2× 2020-11-12 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …