早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=log3x,函数g(x)=log13(mx2+2mx+1).(1)若g(x)的定义域为R,求实数m的取值范围;(2)当x∈[19,9]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).

题目详情
已知函数f(x)=log3x,函数g(x)=log
1
3
(mx2+2mx+1).
(1)若g(x)的定义域为R,求实数m的取值范围;
(2)当x∈[
1
9
,  9]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).
▼优质解答
答案和解析
(1)由题意mx2+2mx+1>0对任意x∈R恒成立.
若m=0,则有1>0对任意x∈R恒成立,满足题意.
若m≠0,
m>0
△=4m2−4m<0

整理得
m>0
0<m<1
,解得0<m<1.
∴m的取值范围为[0,1)
(2)x∈[
1
9
,9]时,令t=f(x),t∈[-2,2],
y=f2(x)-2af(x)+3=t2-2at+3,其对称轴为t=a,
 ①若a<-2,y=t2-2at+3在[-2,2]上单调递增,
∴当t=-2时,ymin=(-2)2-2a•(-2)+3=7+4a;.
 ②若-2≤a≤2,当t=a时,ymin=a2-2a•a+3=3-a2;.
 ③若a>2,同理可得,y=t2-2at+3在[-2,2]上单调递间,
∴当t=2时,ymin=22-2a•a+3=7-4a;
∴h(a)=
7+4a,a<−2
3−a2,−2≤a≤2
7−4a,a>2