早教吧作业答案频道 -->其他-->
已知二次函数,且f(0)=0,f(x+1)=f(x)+x+1,(1)求f(x)(2)利用单调性的定义证明f(x)在x∈(1,2)为单调递增函数.(3)求f(x)在区间x∈(t,t+1)上的最值.
题目详情
已知二次函数,且f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)
(2)利用单调性的定义证明f(x)在x∈(1,2)为单调递增函数.
(3)求f(x)在区间x∈(t,t+1)上的最值.
(1)求f(x)
(2)利用单调性的定义证明f(x)在x∈(1,2)为单调递增函数.
(3)求f(x)在区间x∈(t,t+1)上的最值.
▼优质解答
答案和解析
(1)设f(x)=ax2+bx+c,
由f(0)=0,得c=0,f(x+1)=f(x)+x+1,即a(x+1)2+b(x+1)+c=ax2+bx+c+x+1,
也即ax2+(2a+b)x+a+b=ax2+(b+1)x+1,
所以有
,解得
,
所以f(x)=
x2+
x.
(2)设1<x1<x2<2,
则f(x1)-f(x2)=
(x1−x2)(x1+x2−1),
∵1<x1<x2<2,∴x1-x20,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在(1,2)上为增函数;
(3)①若t+1≤-
,即t≤-
,fmax(x)=f(t)=
t2+
t取不到,fmin(x)=f(t+1)=
t2+
t+1取不到;
②若t<−
<t+1即-
<t<-
由f(0)=0,得c=0,f(x+1)=f(x)+x+1,即a(x+1)2+b(x+1)+c=ax2+bx+c+x+1,
也即ax2+(2a+b)x+a+b=ax2+(b+1)x+1,
所以有
|
|
所以f(x)=
1 |
2 |
1 |
2 |
(2)设1<x1<x2<2,
则f(x1)-f(x2)=
1 |
2 |
∵1<x1<x2<2,∴x1-x20,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在(1,2)上为增函数;
(3)①若t+1≤-
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
②若t<−
1 |
2 |
3 |
2 |
作业帮用户
2017-10-12
举报
![]()
![]() ![]() |
看了 已知二次函数,且f(0)=0...的网友还看了以下:
已知a>0,设命题p:函数y=a^x为减函数,命题q:当x[1/2,2]时,y=x+1/x>1/a 2020-05-17 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
有人说G(X+1)=X(X>0)和G(X)=X-1(X>1)的定义域是一样的都是X>1,但是有些题 2020-07-04 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
1.y=-f(2-x)为什么是将y=f(x)关于原点对称后向右平移两个单位就可以得到.2.y=以2 2020-07-30 …
已知函数f(x)=lnxa+x在x=1处的切线方程为2x-y+b=0.(Ⅰ)求实数a,b的值;(Ⅱ 2020-07-31 …
对应关系是否为A到B的函数一.x→2/x,x≠0,x∈R二.A=Z,B=Z,f:x→y=x²三.集 2020-08-03 …
1.下列是一元一次方程的是()A.2x+y=10B.x^2-x-6=0C.x-1=1/2xD.1/ 2020-08-03 …
规定Cmx=x(x−1)…(x−m+1)m!,其中x∈R,m是正整数,且C0x=1,这是组合数Cmn 2020-12-18 …
规定Cmx=x(x−1)…(x−m+1)m!,其中x∈R,m是正整数,且C0x=1,这是组合数Cmn 2020-12-18 …