早教吧作业答案频道 -->数学-->
设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.(1)求数列{an}的通项公式;(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16
题目详情
设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.
▼优质解答
答案和解析
(1)∵bn+1=bn+log2p,∴bn+1-bn=log2p,
∴{bn}是以log2p为公差的等差数列,
又b2=0,∴bn=b2+(n-2)log2p=log2pn−2,
故由bn=log2an,得an=2bn=2log2pn−2=pn-2;
(2)∵an=pn−2,∴a1•a4•a7•…•a3n-2=p-1•p2•p5…p3n-4
=p-1+2+5+…+(3n-4)=p
,
又a16=p14,∴p
>p14,
(i)当0<p<1时,
<14,解得-
<n<4,不符合题意;
(ii)当p>1时,
>14,解得n>4或n<-
,
综上所述,当p>1时,存在正整数M使得a1•a4•a7•…•a3n-2>a16恒成立,且M的最小值为4;
(3)∵p=2,由(1)得bn=n-2,
∴c1(n-2)+c2(n-3)+c3(n-4)+…+cn(-1)=-2n①,
则c1(n-1)+c2(n-2)+c3(n-3)+…+cn+1(-1)=-2(n+1)②,
由②-①,得c1+c2+c3+…+cn-cn+1=-2③,
∴c1+c2+…+cn+cn+1-cn+2=-2④,
再由④-③,得2cn+1=cn+2,即
=2(n∈N*),
∴数列{cn}一定是等比数列,且公比为2,c1=2,∴cn=2n.
∴{bn}是以log2p为公差的等差数列,
又b2=0,∴bn=b2+(n-2)log2p=log2pn−2,
故由bn=log2an,得an=2bn=2log2pn−2=pn-2;
(2)∵an=pn−2,∴a1•a4•a7•…•a3n-2=p-1•p2•p5…p3n-4
=p-1+2+5+…+(3n-4)=p
n(3n−5) |
2 |
又a16=p14,∴p
n(3n−5) |
2 |
(i)当0<p<1时,
n(3n−5) |
2 |
7 |
3 |
(ii)当p>1时,
n(3n−5) |
2 |
7 |
3 |
综上所述,当p>1时,存在正整数M使得a1•a4•a7•…•a3n-2>a16恒成立,且M的最小值为4;
(3)∵p=2,由(1)得bn=n-2,
∴c1(n-2)+c2(n-3)+c3(n-4)+…+cn(-1)=-2n①,
则c1(n-1)+c2(n-2)+c3(n-3)+…+cn+1(-1)=-2(n+1)②,
由②-①,得c1+c2+c3+…+cn-cn+1=-2③,
∴c1+c2+…+cn+cn+1-cn+2=-2④,
再由④-③,得2cn+1=cn+2,即
cn+2 |
cn+1 |
∴数列{cn}一定是等比数列,且公比为2,c1=2,∴cn=2n.
看了设数列{an}的各项均为正实数...的网友还看了以下:
已知m,n是有理数,下列结论正确的是[]已知m,n是有理数,下列结论正确的是[]A.m>n,则m2 2020-04-08 …
设存在N,使n>N时有an≤A≤bn,且limn→∞(bn-an)=0,则()A.limn→∞an 2020-05-17 …
数列证明的一道难题!数列{an},{bn}都为正数,n属于正数.已知an=1/n,bn^2≤bn- 2020-06-04 …
已知n∈N,数列{dn}满足dn=[3+(-1)的n次方]/2,数列{an}满足an=d1+d2+ 2020-07-09 …
(2015•成都模拟)下列比较正确的是()A.电负性:As>S>PB.第一电离能F>N>OC.熔点 2020-07-29 …
1.已知A,B,C为正数,N是正整数,且f(n)=lg[(An+Bn+Cn)/3],求证:2f(n 2020-07-30 …
已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=bn− 2020-11-29 …
已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N+)则am+n=bn−a 2020-11-29 …
下列比较正确的是()A、电负性:As>S>PB、第一电离能F>N>OC、熔点.BN>CCl4>MgB 2020-11-29 …
已知f(n)=1+12+13+…+1n,n∈n*,求证:(1)当m<n(m∈N*)时,f(n)−f( 2020-12-03 …